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Anomalous behaviour of a passive tracer in
wave turbulence
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We consider the behaviour of a passive tracer in multiscale velocity field, when there
is no separation of scales; the energy spectrum of the velocity field extends into the
region of long waves and even can be singular there. We suppose that the velocity field
is a superposition of random waves. The turbulence of various ocean or atmospheric
waves provides examples. We find anomalous diffusion (sub- and super-diffusion),
anomalous drift (super-drift), and anomalous spreading of a passive tracer cloud. For
the latter we find the existence of two regimes: (i) ‘close’ passive tracer particles diverge
sub- or supper-exponentially in time, and (ii) a ‘large’ passive tracer cloud spreads
as a power-law in time. The exponents, as well as the corresponding pre-factors, are
found. The theory is confirmed by numerical simulations.

1. Introduction
Many studies (see e.g. Bensoussan, Lions & Papanicolaou 1978; Sheng 1995; Majda

& Kramer 1999; Cherkaev 2000; Milton 2000; Sobczyk & Kirkner 2001) consider
media with microstructure, which has variations on some microscale l, whereas the
macroproperties, on some macroscale L, are under investigation. It is assumed that
l � L. To study such situations, the effective medium approximation is developed.
Sometimes the medium has several microscales, all of them being much smaller than
the macroscale L. Sometimes the variations on the macroscale are also included,
which are taken into account by some procedures, such as WKB. What if the medium
has variations on all scales from microscale l to macroscale L? This situation occurs
in several practical problems (see also § 8). This paper considers such a situation.
We chose the passive tracer problem because of the simplicity of the underlying
equation. When the molecular diffusion is negligible, the passive tracer equation can
be reduced to an ordinary differential equation, and so, the theoretical predictions
can be effectively tested by numerical simulations.

Consider the dynamics of a passive tracer in a random velocity field v(x, t), so that
the concentration ϕ(x, t) of the tracer obeys the equation

∂ϕ

∂t
+ ∇[v(r, t)ϕ] = κ∇2ϕ, (1.1)

where κ is the molecular diffusion coefficient. In this paper we assume that the
molecular diffusion is negligible (infinite Péclet number) – as often happens in practical
problems. Then the theoretical predictions can be tested by numerical simulations of
the ordinary differential equation ṙ = v(r, t). The statistics of the velocity field v(x, t)
is given. The problem is to find the statistics of the passive tracer field ϕ(x, t), in
particular, its first statistical moments.
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This problem of passive tracer was intensively studied for many years (see e.g.
reviews Batchelor & Townsend 1956; Majda & Kramer 1999; and references cited
therein), often under the assumption of well-separated scales. The long-time large-
scale behaviour of the passive tracer concentration is considered while the velocity
field is short-range correlated. In particular, several authors studied the white noise
model (Kraichnan 1968), when the velocity field is delta-correlated in time. Some
studies also consider the opposite limit of well-separated scales. The passive tracer is
observed during ‘short’ time, much shorter than the characteristic times of the velocity
field (see e.g. Batchelor & Townsend 1956).

In this paper, we consider the intermediate situation. The observation time t is
well inside the range of time scales of the velocity field. The energy spectrum of the
velocity field has long inertial range, so that some time scales of the velocity field are
shorter than t, and some are longer than t. As time t progresses, more and more time
scales of the velocity field become shorter than t. We call this situation anomalous;
in particular, it leads to the anomalous diffusion and anomalous drift.

Avellaneda & Majda (1990, 1992) have introduced a shear flow model in order to
analyse the effect of large scales of the velocity field on the behaviour of the passive
tracer. Unlike their study, we do not assume any specific geometry of the fluid flow.
However, we assume that the velocity field is a superposition of random waves

v(r, t) = Re

∫
ckbk exp(i(k · r − Ωkt)) dk. (1.2)

Here k is a wave vector, Ωk is the dispersion law; ck are the wave amplitudes, which
are time independent random variables; and bk is the polarization vector, which
defines the multidimensional motion of the fluid particles. In particular, the flow can
be compressible (if the flow is incompressible, then k · bk = 0). The dimension d of
the medium can be arbitrary; Re denotes the real part.

The behaviour of a passive tracer in a wave field was considered by Herterich &
Hasselmann (1982), Weichman & Glazman (1999, 2000, 2002), Balk & McLaugh-
lin (1999) under the assumption of well-separated scales, when the characteristic
wavelength is much smaller than the transport distance of a tracer particle.

In this paper, we consider the situation when the energy spectrum of the velocity
field extends into the region of long waves (and even can be singular there), as well as
in the region of short waves; so, there is no separation of scales. We can say that our
model attempts to resolve the delta function δ(t− t′) of the velocity correlations in the
white noise model (if the observation time t is much larger than the longest time-scale
of the velocity field, then we can assume that the velocity field is delta-correlated in
time; for shorter observation time t we must take into account the details of the time
correlations).

The assumption that the velocity field is a superposition of waves (1.2) allows
us to approach this problem with perturbation methods. We assume that the waves
travel fast whereas the fluid particles move slowly. As usual in dynamical problems,
the perturbational approach is not straightforward, since the small perturbations can
lead to large effects over long times. In this paper, we develop the statistical near-
identity transformation. It is motivated by the usual near-identity transformation
(see e.g. Bogoliubov & Mitropolsky 1961; Sanders & Verhulst 1985) from the theory
of dynamical systems and by the Wiener–Hermite expansion (see e.g. Wiener 1958;
Eftimiu 1990).

This approach can be applied not only to the passive tracer problem (1.1), but to
various wave turbulence problems. Moreover, the calculations in the general situation
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turn out to be simpler since we do not need to pay attention to the details of the
specific situation of the passive tracer. We consider the passive tracer equation (1.1)
as a representative of a class of linear dynamical equations with random coefficients
(§ 2). We show that this class includes, for example, the Schrödinger equation with
random potential.

After we describe the statistical near-identity transformation in § 2, we discuss the
evolution of the average concentration in § 3 and the behaviour of the two point (same
time) correlation function in §§ 4, 5, 6 and 7. Section 4 contains material applicable
to the general situation (described in § 2.1.3), and in § 5 we specify the general results
to the spreading of the passive tracer cloud. We find two regimes of anomalous
spreading: (i) for small clouds (§ 6) and (ii) for large clouds (§ 7).

In the following subsections, we discuss physical questions, the basic scales charac-
teristic to the passive tracer problem, and our main physical predictions.

1.1. Physical questions

Our investigation centres around the following two scenarios.
(i) Imagine that somewhere in the ocean we have put a small piece of wood.

How will it be transported (on average) by the turbulence of the ocean waves (of
various types)? Alternatively, we can think about an air balloon put somewhere in
the atmosphere. How will it be transported by the turbulence of atmospheric waves?

This is the question about the evolution of the average concentration 〈φ(r, t)〉, 〈. . .〉
denotes the average over the ensemble of the velocity fields.

We normalize the function ϕ(r, t) so that it is a probability of finding a particle at
point r at instant t: ∫

ϕ(r, t) dr = 1. (1.3)

We consider the mean displacement of a tracer particle

R = 〈r〉 =

∫
r〈ϕ(r, t)〉 dr (1.4)

and the variance tensor of the mean square displacement

D = 〈(r − R)(r − R)′〉 =

∫
(r − R)(r − R)′〈ϕ(r, t)〉 dr (1.5)

(the prime denotes a transposed matrix; so that r′ is a row, while r is a column). The
mean square displacement is

σ2 = 〈|r − R|2〉 = Trace(D). (1.6)

We find the anomalous diffusion and the anomalous drift of the tracer.
(ii) Imagine that oil is spilled in the ocean. How will the oil spot spread? Alter-

natively, some pollution was released in the atmosphere. How will the polluted area
spread owing to the various atmospheric waves? What is the characteristic size of the
polluted area as a function of time?

These questions are related to the evolution of the two point (same time) correlation
function 〈φ(r1, t)φ(r2, t)〉. In particular, we consider the variance tensor of relative
displacement between two particles

S = 〈(r2 − r1)(r2 − r1)
′〉 =

∫
(r2 − r1)(r2 − r1)

′〈ϕ(r1, t)ϕ
∗(r2, t)〉 dr1 dr2. (1.7)
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Although in the passive tracer case the function ϕ is real, we use complex conjugated
ϕ∗ in this equation, so that the matrix S is real in the general situation (see §§ 2.1.2
and 2.1.3). The diameter ρ of the passive tracer cloud is

ρ2 = 〈|r2 − r1|2〉 = Trace(S). (1.8)

The main physical goal of this paper is to find the evolution of the quantities R(t),
D(t), and S(t). We study the anomalous situation, when the observation time t is well
inside the range of time scales of the velocity field.

1.2. Basic scales

In order to use perturbations, we assume that the velocity of the fluid particles is
much smaller than the velocity of waves. If the velocity field were characterized by
some length scale, then we would naturally define the small parameter as

ε =
characteristic speed of the fluid particles

characteristic group velocity of the waves
. (1.9)

Such a situation takes place when the energy spectrum εk of the velocity field has a
clear pick near some wavenumber K0 and vanishes away from K0, e.g. εk = 0 when
k < 1

2
K0 or k > 2K0. Then as a characteristic wave speed, we can take the group

velocity ∂Ω/∂k evaluated at the point K0, while as a characteristic fluid speed we can
take the root mean square velocity u,

u2 = E =

∫
εk dk.

However, in several practical situations the energy spectrum extends through a
wide range of wavenumbers. What is the small parameter in such situations?

For example, the dispersion law Ωk and the energy spectrum εk can be power-law
functions of the wavenumber k = |k| (with some possible angular dependence) in a
large inertial range:

Ωk =AkαΦ
(
k

k

)
(α > 0), (1.10)

εk = Ck−γΨ
(
k

k

)
in some inertial interval Kmin � k � Kmax. (1.11)

We assume that the exponent α is positive, but the exponent γ can be arbitrary
(positive, or negative, or zero). Since we have introduced the constants A and C,
we can assume that the functions Φ and Ψ (defining the angular dependence) are
dimensionless, and their integrals over the angular variables are equal to one.

The formulae (1.10) and (1.11) introduce dimensional parameters A and C (A
has dimension mα/s, and C has dimension m2+d−γ/s2). By dimensional considerations
these constants define the length scale ξ and the time scale τ

ξ = (C/A2)1/δ, τ = (1/A)ξα where δ = 2 + d− γ − 2α. (1.12)

The applicability of the perturbational approach depends on the relation of the length
scale ξ to the largest and smallest length scales of the velocity field, namely largest
and smallest wavelengths:

Λmax =
1

Kmin

, Λmin =
1

Kmax

. (1.13)
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In other words, the applicability of the perturbational approach depends on the
relation of the time scale τ to the largest and smallest time scales of the velocity field,
namely the largest and smallest wave periods:

Tmax =
1

Ωmin
=

1

AKα
min

, Tmin =
1

Ωmax
=

1

AKα
max

. (1.14)

In accordance with (1.9), we could require the root mean square velocity u to be
much smaller than the slowest wave speed. However, this requirement is too strict.
For instance, if the energy E diverges at small scales, the particle velocity u is
infinite. However, small scales give only an insignificant contribution to the turbulent
transport, and so, the perturbational approach can be applicable.

It turns out to be sufficient to compare the fluid velocity and the wave velocity
only at the same scale. So we define the small parameter ε in the following way. Let
EK be the energy of scale K , i.e. the energy in the shell 1

2
K < |k| < 2K:

EK =

∫
K/2<|k|<2K

εk dk.

Then ε2 is the maximum of the ratio of this energy to the square group velocity of
the waves with the same wave number:

ε2 = max
Kmin<K<Kmax

EK
(∂Ω/∂K)2

.

In the power law situation this definition gives

ε2 =
C
A2

Kδ 1

α2(d− γ)
(

2d−γ − 1

2d−γ

)
where K =

{
K = Kmin if δ < 0,
K = Kmax if δ > 0.

The sign of the exponent δ determines which side of the inertial range (of the
velocity field) the small parameter depends on. If δ < 0, then ε depends on the large
scale cutoff; if δ > 0, then ε depends on the small scale cutoff. In this paper, we
concentrate on the situation of negative δ (Balk (2000) contains an example of the
opposite situation, when δ > 0). So, without the constant factor, the small parameter
is

ε2 =
C
A2

Kδ
min = (ξKmin)

δ. (1.15)

Even this definition of a small parameter can often be too restrictive. For instance,
it may happen that the perturbational approach is applicable only during some time.
During the time t a tracer particle ‘feels’ random waves with wavenumbers k greater
than K(t) = (1/At)1/α. They are given by the condition 1/Ωk < t. So, instead of Kmin

in (1.15), we can put K(t):

ε2 = [ξK(t)]δ =

(
t

τ

)−δ/α
. (1.16)

In § 5.1.1, we suggest another applicability condition.
The perturbational approach is applicable even if the total energy

∫
εk dk diverges

at large scales, and the characteristic particle velocity u is infinite. This happens when
γ > d. In this situation, the mean square displacement, (1.6), is infinite, but the mean
square distance between two tracer particles can be finite (since large scales convect
the two particles in a similar way). So the characteristic size of a tracer cloud can
remain finite, and we find its evolution.
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1.3. Physical predictions

The velocity field is characterized by a wide range of the space scales Λ and time
scales T :

Λmin � Λ� Λmax, Tmin � T � Tmax (1.17)

(see (1.13) and (1.14)). The behaviour of the passive tracer crucially depends on the
observation scales.

If we observe the passive tracer long enough, during the time t� Tmax, then we have
normal diffusion, similar to Brownian motion. This is the situation of well-separated
scales; long-time behaviour of the passive tracer in a short-range correlated velocity
field was considered by Herterich & Hasselmann (1982), Weichman & Glazman (1999,
2000, 2002) and Balk & McLaughlin (1999). In the first order ε, fluid particles in
wave motion have closed orbits (this fact is well-known for sea waves); the particle
displacement over the wave period is of order ε2, and D should be of order ε4. So, in
the order ε2 – which we consider in this paper – the mean square displacement stays
constant: D = const.

If we observe the passive tracer during the short time t � Tmin, then the passive
tracer ‘feels’ that it is transported by a constant (but random) velocity field, and so,
D behaves like t2, D ∝ t2 (cf. Batchelor & Townsend 1956).

If we observe the passive tracer during the intermediate time t, Tmin � t � Tmax,
then the tracer exhibits anomalous behaviour, which we study in this paper. Practical
situations are provided by ‘large-scale waves’, such as Rossby waves. They have time
scales from months to a few years (see e.g. Gill 1982). In this situation, the observation
time t could be of the order of seasons.

During the intermediate time, short waves, i.e. waves with periods T � t, lead
to normal diffusion. On the other hand, long waves, i.e. waves with periods T � t,
convect passive tracer particles. So, the orbits of the fluid particles are not closed
even at the lowest order ε. Therefore, the displacement of the passive tracer particles
is of the order ε for each realization of the velocity field. However, when we average
over the ensemble of velocity fields with random phases (of the complex wave
amplitudes), the mean displacement vanishes at order ε and turns out to be of the
order of ε2.

1.3.1. Anomalous diffusion

While the normal diffusion vanishes at order ε2 and appears only at order ε4, the
anomalous diffusion displays itself already at order ε2.

Thus, at order ε2, the mean square displacement, (1.6), behaves in the following
way. If t � Tmin, then σ2 ∝ t2. If t � Tmax, then σ2 ∝ t2. In the intermediate time
interval Tmin � t� Tmax we can expect anomalous diffusion with σ2 ∝ tλ, 0 < λ < 2.

We find that the mean square displacement, (1.6), behaves like

σ2 =


σ2

1 if γ 6 d− 2α,

σ2
1t
λ if d− 2α 6 γ 6 d

∞ if γ > d.

where λ = 2 +
γ − d
α

,

We have sub-diffusion when 0 < λ < 1, and super-diffusion when 1 < λ < 2.
Along with the exponent λ, we find the pre-factor σ2

1 . We also obtain a formula for
the entire variance tensor (1.5). See formulae (3.8) for the one-dimensional case and
(3.17) for the two-dimensional case. In a general situation (when the dispersion law
and the energy spectrum are not necessarily power-law functions) the variance tensor
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is given by the formulae (3.4) or (3.2); the latter allows for the frequency spreading
around ω = Ωk.

Balk (2001a, b) presented the numerical confirmation of this prediction. Figure 1
shows the numerical confirmation of our prediction over a five-decade time interval,
during which σ increases 104 times. We have agreement not only in the exponent λ,
but also in the pre-factor σ2

1 .

1.3.2. Anomalous drift

Besides the anomalous diffusion, we find anomalous drift as well.
Even if the average velocity is zero, the mean displacement (1.4) can be non-zero.

For this it is necessary that the velocity field is anisotropic and compressible (see
§ 3.2.2).

If t � Tmax, then we have the situation of well-separated scales and normal drift
with Ṙ ∝ t, like in anisotropic Brownian motion.

If t � Tmin, then the passive tracer is transported by an ‘almost’ constant velocity
field, and therefore, Ṙ ∝ t2. To see this, we solve the initial-value problem

ṙ = v(r, t), r(0) = r0;

by Picard’s iterations

r(t) = r0 +

∫ t

0

v(r0, η) dη + O(t2) (t→ 0).

Now we average this expression over the ensemble of the velocity fields. Assuming
that the velocity field has zero mean (〈v(r0, η)〉 = 0), we have 〈r(t)〉 = r0 + O(t2).

In the intermediate time interval Tmin � t � Tmax, we can expect anomalous drift
with R ∝ tµ, 1 < µ < 2.

We find that the mean displacement, (1.4), grows like

R =

{
R1t if γ 6 d+ 1− α
R1t

µ if d+ 1− α 6 γ 6 d+ 1
where µ = 2 +

γ − d− 1

α
= λ− 1

α
.

Since µ > 1, we can have only a super-drift. It occurs only when there is super-
diffusion (1 < λ < 2), and α < 1.

Along with the exponent µ, we also find the constant pre-factor R1, see formulae
(3.10) for the one-dimensional case and (3.18) for the two-dimensional case. In a
general situation (when the dispersion law and the energy spectrum are not necessarily
power-law functions) the drift is given by the formulae (3.4) or (3.2); the latter allows
for the frequency spreading around ω = Ωk.

Balk (2001) presented the numerical confirmation of this result.
The mean displacement, (1.4), and the mean square displacement, (1.5), are char-

acteristics of the one-particle statistics. The two-particle statistics, and its primary
characteristic – the relative mean square displacement (1.7) and (1.8) are also practi-
cally important.

The behaviour of two-particle statistical quantities crucially depends on the relation
of the distance s between the particles and the observation time t to the scales (1.17)
of the velocity field.

If s� Λmax then the two tracer particles are statistically independent, and therefore

Ṡ = 2Ḋ ⇒ ρ̇2 = 2σ̇2.

If s� Λmin then the two particles do not ‘feel’ any turbulence; the distance between
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them is just stretched by the flow. If we observe the particles during short time
t� Tmin, then the diameter of the passive tracer cloud grows exponentially with t2:

ρ(t) = ρ0 exp{Bt2},
where ρ0 is the initial diameter of the passive tracer cloud (at t = 0), and B is a
constant, see § 5.2.2.

For the intermediate range of the separations s, Λmin � s� Λmax, we can expect to
see anomalous spreading of the passive tracer cloud. As the cloud spreads, more and
more scales Λ of the velocity field become less than the diameter ρ of the cloud; the
short scales Λ � ρ contribute to the normal diffusion, while the large scales Λ � ρ
contribute to the convection of the cloud. We find the existence of two regimes of
this anomalous behaviour; they are determined by the length scale ξ (defined by the
constants A and C in (1.12)): (i) ρ� ξ and (ii) ρ� ξ.

1.3.3. Sub- or super-exponential divergence of ‘close’ tracer particles

When the cloud is sufficiently small ρ � ξ, the diameter ρ(t) of the cloud grows
sub- or super-exponentially:

ρ(t) = ρ0 exp
{B(t/τ)β

}
where β = 2 +

γ − d− 2

α
= λ− 2

α
,

where ρ0 = ρ(0) is the initial diameter (see § 6). Along with the exponent β, we also
determine the constant pre-factor B; see (6.5) for the two-dimensional case. Formula
(6.3) describes a general situation, when the energy spectrum and/or the dispersion
law are not necessarily power-law functions of the wavenumber k.

The sub- or super-exponential divergence of the tracer particles saturates at a
certain instant. At this time, the diameter of the cloud reaches the value of order ξ
and ‘forgets’ the initial value ρ0.

1.3.4. Power-law spreading of a ‘large’ passive tracer cloud

If the initial diameter ρ0 of the passive tracer cloud is large compared with the scale
ξ, the diameter ρ(t) grows according to the following ordinary differential equation

τ

ξ2
ρρ̇ = a

(
t

τ

)(
ρ

ξ

)γ−d
+ b

(
t

τ

)1+(γ−d)/α

see § 7. We find the value of the constant b, but the determination of the constant a
would require the solution of an integral-differential equation, (5.2), which we derive
in this paper.

If γ < d, then a < 0 and b > 0; if γ > d, then a > 0 and b < 0. For sufficiently long
time t (τ� t� Tmax) the cloud diameter ρ behaves like a power of t:

ρ(t)

ξ
∼


√

2b

λ

(
t

τ

)λ/2
, λ = 2 +

γ − d
α

if γ < d,(a
ν

)ν/2( t
τ

)ν
, ν =

2

d+ 2− γ if γ > d.

2. Statistical near-identity transformation
The derivation of equations for the averaged behaviour of the passive tracer is

simpler and more transparent if we generalize this case and ignore specific details



Anomalous behaviour of a passive tracer in wave turbulence 171

of the passive tracer problem. In this paper we develop the statistical near-identity
transformation for a general linear dynamical system with random coefficients. This
system is a generalization, in particular, of the following two physical examples:
the passive tracer problem (which we reformulate more precisely in § 2.1.1) and
the Schrödinger equation with random potential (§ 2.1.2). The general situation is
considered in § 2.1.3, and the statistical near-identity transformation is described in
§ 2.2. In § 2.3, we find the statistical Green’s function G(r, t) that relates the average
〈ϕ(r, t)〉 to the initial condition ϕ0(r) = ϕ(r, 0).

2.1. The equation

2.1.1. Passive advection

When the molecular diffusion is negligible (κ = 0), the evolution of the passive
tracer concentration ϕ(r, t) is described by the equation

∂ϕ

∂t
+ ∇[v(r, t)ϕ] = 0. (2.1)

We assume that the velocity field v(r, t) is a superposition of waves with some
dispersion law Ωk. If the dispersion law is odd, we can rewrite (1.2) in the form

v(r, t) =

∫
ckbk exp(i(k · r − Ωkt)) dk; (2.2)

without the real part Re; the velocity field, (2.2), is real provided

ck = c∗−k, bk = b∗−k, Ωk = −Ω−k.
The representation (2.2) takes place, for example, for Rossby waves

Ωk = Ω(kx, ky) = kx/(1 + k2
x + k2

y).

If the dispersion law is even, Ωk = Ω−k, we have the following representation of
the velocity field

v(r, t) =
1√
2

∫
ckbk exp(i(k · r − Ωkt)) dk +

1√
2

∫
c∗−kb

∗
−k exp(i(k · r + Ωkt)) dk (2.3)

(this 1/
√

2 normalization is chosen from the energy considerations, see below). The

representation (2.3) takes place, for example, for gravity waves, Ωk =
√|k|.

In the case of an arbitrary dispersion law, we represent the velocity field in the
form

v(x, t) =

∫
Aqbk exp(i(k · x− ωt)) dk dω q = (k, ω) (2.4)

where the function Aq = A(k, ω) is ‘concentrated’ along some surface in the (k, ω)-
space, defined by the dispersion relation of the medium. In particular,

in the case (2.2), Aq = ckδ(ω − Ωk),
in the case (2.3), Aq =

1√
2
ckδ(ω − Ωk) +

1√
2
c∗−kδ(ω + Ωk).

The formula (2.4) works as well when the dispersion law is neither odd nor even.
The representation (2.4) can also describe situations when there is some ‘frequency
spreading’. The function Aq is large in some ‘vicinity’ of the surface, defined by the
dispersion relation (not just on the surface itself); it approaches zero when we move
away from this surface.
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For the velocity field to be real, we require that

Aq = A∗−q, bk = b∗−k.

We assume that the velocity v(r, t) is a Gaussian random field with zero mean,
statistically homogeneous in space and in time. It means that the wave amplitudes Aq
are Gaussian random variables with zero mean 〈Aq〉 = 0 and variance

〈AqA∗q1
〉 = Eqδ(k − k1)δ(ω − ω1) (Eq = E−q).

The spectrum Eq = E(k, ω) (together with the polarization vector) completely defines
the statistical ensemble of the velocity fields.

The problem is to find the statistical properties of the tracer field ϕ(r, t), in
particular, the mean displacement (1.4), the variance tensor (1.5), and the variance
tensor of relative displacement (1.7).

We normalize the polarization vector to a unit, |bk| = 1; then Eq = E(k, ω) is the
energy spectrum.

When the waves are linear, i.e. their frequency is defined by the linear dispersion
relation (without frequency spreading), we consider the spectrum εk

〈c1c
∗
2〉 = ε1δ(k1 − k2).

For odd and even dispersion law we have, respectively,

in the case (2.2), Eq = E(k, ω) = εkδ(ω − Ωk), εk = ε−k, (2.5)

in the case (2.3), Eq = E(k, ω) = 1
2
εkδ(ω − Ωk) + 1

2
εkδ(ω + Ωk). (2.6)

In both cases, the total energy is

E ≡
∫
E(k, ω) dk dω =

∫
εk dk.

We write the passive tracer equation (2.1) in the Fourier representation

ḟ1 +

∫
ik1 · b3 exp(−iω3t)f2A3δ(−k1 + k2 + k3)d23 = 0, (2.7)

where the function fk(t) is the Fourier transform of ϕ(r, t) with respect to the spatial
variables

ϕ(r, t) =

∫
fk(t) exp(ik · r) dk (fk = f∗−k).

Here and below we use notations of the following type: for any function h, depending
on (k, ω) or just on k, we write hj instead of h(kj , ωj) (j = 1, 2, . . .), e.g. f1 = fk1

, f2 =
fk2
, b3 = bk3

A3 = A(k3, ω3).
A similar equation in the Fourier representation also appears in the following

problem.

2.1.2. Schrödinger equation with random potential

This problem is described by the equation

i
∂ψ

∂t
+ ∆ψ −U(r, t)ψ = 0, (2.8)

where the potential U(r, t) is a random function.
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We represent the potential in the form

U(r, t) =

∫
Aq exp(i(k · r − ωt)) dkω q = (k, ω). (2.9)

In particular, the potential can be stationary (time-independent), which is the case in
many studies (see e.g. Sheng 1995 and references cited therein). In that case, Aq does
not depend on the frequency ω, and we can integrate over ω. However, we would like
to keep consideration of a more general case, when the potential can depend on time.
That is, we assume that U(r, t) is a superposition of waves (2.9), which means that the
function Aq is ‘concentrated’ along some surface (defined by the dispersion relation of
the waves). As in the previous problem of passive advection, the representation (2.9)
can describe situations when there is some ‘frequency spreading’ (the function Aq is
large in some ‘vicinity’ of the surface, defined by the dispersion relation, not just on
the surface itself). If the potential is stationary, the dispersion law of the waves just
equals zero identically.

For the potential to be real, we require that Aq = A∗−q .
We assume that the potential is a random Gaussian field with zero mean, statistically

homogeneous in space and in time. It means that the wave amplitudes Aq are Gaussian
random variables with zero mean 〈Aq〉 = 0 and variance

〈AqA∗q1
〉 = Eqδ(k − k1)δ(ω − ω1) (Eq = E−q).

Thus, the spectrum Eq = E(k, ω) completely defines the statistical ensemble of the
potentials.

If there were no potential (U = 0), the solution ψ would be merely a superposition
of linear waves

ψ(x, t) =

∫
fk exp(i(k · x− k2t)) dk (2.10)

with wave amplitudes fk being time independent. When there is a ‘small’ potential, the
wave amplitudes become ‘slow’ functions of time, and we consider the formula (2.10)
as the transformation to the new variable fk(t). It satisfies the following equation

ḟ1 +

∫
i exp(i(k2

1 − k2
2 − ω3)t)f2A3δ(−k1 + k2 + k3) dk2 dk3 dω3 = 0. (2.11)

2.1.3. The general equation

The two problems considered above (passive advection and the Schrödinger equa-
tion with random potential), as well as various other problems, can be formulated in
terms of the following equation

ḟ1 +

∫
Ŵ−123f2A3 d23 = 0, Aq = A∗−q, (2.12)

with the kernel

Ŵ−123 = W−123δ(−k1 + k2 + k3)

= U−123 exp(−i(−σ1 + σ2 + ω3)t) δ(−k1 + k2 + k3). (2.13)

Here ‘1’ denotes k1, ‘2’ denotes k2, and ‘3’ denotes q3 = (k3, ω3); the hat symbol
denotes the multiplication by the corresponding delta function.

In the case of the passive tracer

σk ≡ 0, U−123 = ik1 · b3. (2.14)
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In the case of the Schrödinger equation

σk = k2, U−123 = i. (2.15)

The function Aq is the Fourier representation of a random Gaussian field with
zero mean 〈Aq〉 = 0, statistically homogeneous in space and in time. Therefore, the
spectrum Eq = E(k, ω), defined by the formula

〈AqA∗q1
〉 = Eqδ(k − k1)δ(ω − ω1),

completely determines the statistical ensemble of the wave amplitudes Aq .
The problem is to find statistical properties of the field fk(t).
We assume that the function Aq is ‘concentrated’ along some surface (defined by

the dispersion relation) in the (k, ω)-space. The function Aq , as well as the spectrum
Eq , is large in some ‘vicinity’ of this surface (they are delta-like functions with a ridge
along this surface). For example, without the frequency spreading

Aq = Aqδ(Lq), Eq = Eqδ(Lq),

where Lq = L(k, ω) is the dispersion relation, e.g. Lq = ω2 − Ω2
k.

2.2. The transformation

Our goal is to find statistical properties of the field fk(t), in particular, the ensemble
average 〈fk(t)〉. For this we introduce statistical near-identity transformation.

The form of this transformation is motivated by the usual near-identity transfor-
mation known in the theory of dynamical systems (e.g. Bogoliubov & Mitropolsky
1961; Sanders & Verhulst 1985) and by the Wiener–Hermite expansion (e.g. Wiener
1958; Eftimiu 1990).

2.2.1. Recalling the usual near-identity transformation

Let us first of all recall the usual near-identity transformation from the theory
of dynamical systems. Suppose we want to solve the following ordinary differential
equation

ü+ ω2u = εh(u, u̇, t)

with a small parameter ε (ω 6= 0 is a given constant, h is given function, u = u(t) is
the unknown function). When ε = 0, the solution is simple: u = a cos(ωt+ φ), where
a and φ are constants. When the parameter ε is positive, but ‘small’, the quantities
a and φ become ‘slow’ functions of time: a = a(t), φ = φ(t). We can change the
variable (u, u̇) to variables (a, φ); introducing the vector x = (a, φ), we write the
original equation in the form

ẋ = εW (x, t). (2.16)

This is the standard form, which is equivalent to the original form (no approximation
has been made). The form of the function W is determined by the function h in the
original equation. The standard form can arise from other equations, and the vector
x can have any dimension. It is supposed that the function W is oscillatory in time,
that is, it can be expanded in the form

W (x, t) =
∑
ν

W ν(x) eiνt.

To solve this equation by perturbation methods, we look for a near-identity
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transformation

x = y + εX (y, t),

where X is an undetermined function, bounded in y and t. (When ε = 0, this trans-
formation is an identity). We choose the function X so that the equation for the new
variable y is the ‘simplest’ possible. We obtain the equation

ẏ = εP(y) + ε2Q(y, t).

So, we have ‘pushed’ the time dependence to the order ε2. Neglecting the ε2-term, we
obtain the first approximation (The method of near-identity transformation is also
called the method of averaging because the function P is the time-average of the
function W : P(y) = W 0( y).)

We can also obtain the second approximation: For this, we consider a near-identity
transformation of the form

x = y + εX (y, t) + ε2Y (y, t),

where X and Y are undetermined functions. We choose these functions so that the
equation for the new variable y is the ‘simplest’ possible. We obtain the equation

ẏ = εP(y) + ε2Q(y) + ε3R(y, t). (2.17)

So, we have ‘pushed’ the time dependence to the order ε3. Neglecting the ε3-term, we
obtain the second approximation.

2.2.2. Statistical transformation, motivated by the Wiener–Hermite expansion

The method of near-identity transformation works well if there are no resonances
(ideally when there is only one basic frequency ω; all other frequencies are integer
multiples of ω). However, in the passive tracer situation we have a wide range of
frequencies, and there are many resonances. We will use the randomness of the wave
amplitudes in order to develop a near-identity transformation in this situation.

The Fourier transformation of the passive tracer equation (2.1) is similar to the re-
duction to the standard form; equation (2.12) is analogous to the ordinary differential
equation (2.16) in the standard form. To approach equation (2.12) by perturbation
methods, we construct the following near-identity transformation

f1 = g1 +

∫
X̂−123g2A3d23 +

1

2

∫
Ŷ −1234g2[A3A4 − E3δ(q3 + q4)] d234. (2.18)

Here, X̂ and Ŷ are some undetermined kernels; the hat symbol denotes the multipli-
cation by the corresponding δ-function:

X̂−123 = X(−k1, k2, k3; t)δ(−k1 + k2 + k3),

Ŷ −1234 = Y (−k1, k2, k3, k4; t)δ(−k1 + k2 + k3 + k4).

There is no explicit ε in the transformation (2.18), but we assume that the wave
amplitudes are small, of the order ε, so that the first integral in (2.18) represents an
ε-term, whereas the second integral represents an ε2-term.

The transformation (2.18) contains the first two functions of the infinite sequence
of the Wiener–Hermite polynomials H with respect to the Gaussian random field Aq:

H
(1)
1 = A1, H

(2)
12 = A1A2 − E1δ(q1 + q2),

H
(3)
123 = A1A2A3 − A1E2δ(q2 + q3)− A2E3δ(q3 + q1)− A3E1δ(q1 + q2), . . . .
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The Wiener–Hermite polynomials are orthogonal with respect to the statistical av-
eraging: 〈H (i)H (j)〉 = 0 for two polynomials of different orders i 6= j. Besides, they
form a complete set. A functional of the field Aq can be expanded in a series over
the Wiener–Hermite polynomials. In particular, the solution of equation (2.12) can
be represented by the Wiener–Hermite expansion

f1 = M1f
0
1 +

∫
M̂−123f

0
2H

(1)
3 d23 + 1

2

∫
M̂−1234f

0
2H

(2)
34 d234 +

+
1

3!

∫
M̂−12345f

0
2H

(3)
345 d2345 + · · · ,

with some kernels M1, M̂−123, M̂−1234, M̂−12345, . . . . The function f0
k denotes the initial

condition, fk(0) = f0
k. The transformation (2.18) could be considered as a truncation

of the infinite Wiener–Hermite series. Herewith, we also change the term Mkf
0
k to a

new variable gk(t).
The Wiener–Hermite polynomials motivated our form of the near-identity transfor-

mation (2.18). With the aid of this transformation we intend ‘to push’ the randomness
to the ε3-order, similar to ‘pushing’ time-dependence to the ε3-order in the second
approximation, (2.17), of the usual near-identity transformation method.

2.2.3. Change of variables

We consider equation (2.18) as a change of variables from the old variable fk(t) to
the new variable gk(t).

Without loss of generality, we can assume that the kernel Ŷ −1234 is symmetric with
respect to the transposition of the last two indices: Ŷ −1234 = Ŷ −1243 (this is the reason
for introducing the normalization factor 1

2
in front of the integral with Ŷ −1234).

Substituting (2.18) into equation (2.12) for fk(t), we arrive at the following equation
for gk(t)

ġ1 +

∫
˙̂
X−123g2A3 d23 + 1

2

∫
˙̂
Y −1234g2[A3A4 − E3δ(q3 + q4)] d234

+

∫
X̂−123ġ2A3 d23 + 1

2

∫
Ŷ −1234ġ2[A3A4 − E3δ(q3 + q4)] d234

+

∫
Ŵ−123

×
{
g2 +

∫
X̂−256g5A6 d56 + 1

2

∫
Ŷ −2567g5[A6A7 − E6δ(q6 + q7)] d567

}
A3 d23 = 0.

(2.19)

2.2.4. The kernel choice

In accordance with the general idea of the near-identity transformation, we choose
the kernel X−123 so that the terms linear in the field Aq disappear from equation
(2.19). This is possible if

Ẋ−123 = −W−123 provided − k1 + k2 + k3 = 0. (2.20)

Then ġk = O(ε2), and the integrals with time derivative ġ have the order ε3. So, we
obtain the following equation

ġ1 + 1
2

∫
˙̂
Y −1234g2[A3A4 − E3δ(q3 + q4)] d234

+

∫
Ŵ−123X̂−256g5A6A3 d2356 + ε3{. . .} = 0. (2.21)
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Now we want to choose the Y -kernel to ‘kill’ the second-order Wiener–Hermite poly-
nomial H (2)

34 = A3A4−E3δ(q3 +q4). For this, we make the first and the second integral
in (2.21) look similar. First, we rename the integration variables in the second integral:

5→ 2, 3→ 3, 6→ 4, 2→ 5⇒
∫
Ŵ−153X̂−524g2A4A3 d2345;

then we symmetrize this integral with respect to transposition 3↔ 4

1
2

∫ {
Ŵ−153X̂−524 + Ŵ−154X̂−523

}
g2A3A4 d2345

and write A3A4 in the latter integral as A3A4−E3δ(q3 +q4) +E3δ(q3 +q4). As a result,
we rewrite equation (2.21) in the form

ġ1 + 1
2

∫
˙̂
Y −1234g2[A3A4 − E3δ(q3 + q4)] d234

+ 1
2

∫ {
Ŵ−153X̂−524 + Ŵ−154X̂−523

}
g2[A3A4 − E3δ(q3 + q4)]

+ 1
2

∫
W−153X−51−3g2E3δ(−k1 + k5 + k3) d35 + ε3{. . .} = 0. (2.22)

We choose the kernel Y−1234 so that

Ẏ −1234 = −W−153X−524|k5=k1−k3=k2+k4
− W−154X−523|k5=k1−k4=k2+k3

; (2.23)

then the second-order Wiener–Hermite polynomial H (2)
34 = A3A4−E3δ(q3 + q4) disap-

pears from equation (2.22). Thus, we find the following equation

ġ1 + g1

∫
W−123X−21−3E3δ(−k1 + k2 + k3) d23 + ε3{. . .} = 0. (2.24)

So, we have pushed the randomness to the ε3-term. Neglecting it, we obtain the
approximation that we use to find the evolution of the mean 〈fk(t)〉.

We would like to emphasize that we do not use the series expansions. To derive
equation (2.24), we do not work with series, and we ignore convergence (about the
behaviour of nth term in the series as n→∞). Instead, we change the variables (2.18),
which is a finite sum of three terms. We think that this approach via the statistical
near-identity transformation would enable us to justify equation (2.24) rigorously.

2.2.5. Simplified transformation

The kernel Y−1234 does not affect equation (2.24). It is usual for a near-identity
transformation that the highest-order term in such a transformation does not affect
the corresponding approximation (see e.g. Bogoliubov & Mitropolsky 1961; Sanders
& Verhulst 1985). We could obtain equation (2.24) in the following, simpler, manner.
Instead of (2.18), we could have made the transformation

f1 = g1 +

∫
X̂−123g2A3 d23, (2.25)

without the Y -term, and obtained the equation

ġ1 +

∫
˙̂
X−123g2A3 d23 +

∫
X̂−123ġ2A3 d23

+

∫
Ŵ−123

{
g2 +

∫
X̂−256g5A6 d56

}
A3 d23 = 0. (2.26)
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As previously, we choose the kernel X−123 according to (2.20), so that the linear terms
in the field Aq disappear from equation (2.26). Then ġk = O(ε2), and the integral with
time derivative ġ are of order ε3. Instead of equation (2.21), we have

ġ1 +

∫
Ŵ−123X̂−256g5A6A3 d2356 + ε3{. . .} = 0. (2.27)

Now we average this equation with respect to the random variables Aq , assuming
that g-variables are statistically independent of A-variables. As a result, we obtain
equation (2.24).

This simplified (but less substantiated) derivation of the averaged equation (2.24)
is actually similar to the averaging procedure (with respect to time) in the theory of
dynamical systems. The same equation can be obtained in two ways, either we apply
the near-identity transformation with all the terms, or we apply the near-identity
transformation without the highest-order term and subsequently perform averaging.

We use only the simplified derivation, with the averaging, to obtain equations for
the two-point correlation function (§ 4), and we do not substantiate them by the
statistical near-identity transformation with all the terms.

2.2.6. Time dependence

Since equations (2.20) and (2.23) define only the time derivatives of the kernels X
and Y in the near-identity transformation (2.18), we choose the constants of time
integration so that the initial condition for the new variable gk(t) would be the same as
for the old variable fk(t). Then, the near-identity transformation (2.18) is the identity
initially.

Thus, according to (2.20),

X−123 = −U−123

exp(−i(−σ1 + σ2 + ω3)t)− 1

−i(−σ1 + σ2 + ω3)
; (2.28)

and according to (2.23),

Ẏ −1234 = U−153U−524 exp(−i(−σ1 + σ5 + ω3)t)

× exp(−i(−σ5 + σ2 + ω4)t)− 1

−i(−σ5 + σ2 + ω4)

∣∣∣∣
k5=k1−k3=k2+k4

+ {same with exchange 3↔ 4},
so,

Y−1234 = −U−153U−524

{
exp(−i(−σ1 + σ2 + ω3 + ω4)t)− 1

(−σ1 + σ2 + ω3 + ω4)(−σ5 + σ2 + ω4)

− exp(−i(−σ1 + σ5 + ω3)t)− 1

(−σ1 + σ5 + ω3)(−σ5 + σ2 + ω4)

}
k5=k1−k3=k2+k4

−U−154U−523

{
exp(−i(−σ1 + σ2 + ω3 + ω4)t)− 1

(−σ1 + σ2 + ω3 + ω4)(−σ5 + σ2 + ω3)

− exp(−i(−σ1 + σ5 + ω4)t)− 1

(−σ1 + σ5 + ω4)(−σ5 + σ2 + ω3)

}
k5=k1−k4=k2+k3

.

(2.29)
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Now, equation (2.24) can be rewritten in the form

ġ1 = g1

∫
U−1,2,3U−2,1,−3

1− exp(−i(−σ1 + σ2 + ω3)t)

i(−σ1 + σ2 + ω3)
E3δ(−k1 + k2 + k3) d23 (2.30)

(ε3-terms are neglected).

2.3. Green’s function

Since the initial conditions for the old variable fk(t) and for the new variable gk(t)
coincide:

gk(0) = fk(0) = f0
k,

equation (2.30) defines the solution

g1(t) = f0
1 exp

{∫
U−1,2,3U−2,1,−3

1 + i(σ1 − σ2 − ω3)t− exp(i(σ1 − σ2 − ω3)t)

(σ1 − σ2 − ω3)2

×E3δ(k1 − k2 − k3) d23

}
. (2.31)

The solution fk(t) of the original equation (2.12) is expressed through the function
(2.31) by the near-identity transformation (2.18). Since (2.31) is not a random function,
and the average of each Weiner–Hermite polynomial is zero, the ensemble average of
the original solution fk(t) is equal to the function (2.31):

〈fk(t)〉 = gk(t)⇒ 〈ϕ(r, t)〉 =

∫
gk(t) exp(ik · r) dk, (2.32)

where ϕ(r, t) is the solution of our equation in the real space representation. Equations
(2.31) and (2.32) mean that

〈ϕ(r, t)〉 =

∫
G(r − r1, t)ϕ0(r1) dr1, (2.33)

where ϕ(r, 0) = ϕ0(r) is the initial condition, and the Green function G(r, t) is the
Fourier transform of our solution (2.31) with the initial condition

f0
k = 1/(2π)d ⇔ ϕ(r, 0) = δ(r),

(d is the dimension of the medium). Thus,

G(r, t) =

∫
gk(t) exp(ik · r) dk where g1(t) =

1

(2π)d

× exp

{∫
U−1,2,3U−2,1,−3

1 + i(σ1 − σ2 − ω3)t− exp(i(σ1 − σ2 − ω3)t)

(σ1 − σ2 − ω3)2
.

×E3δ(k1 − k2 − k3) d23

}
(2.34)

(recall that E3 = E(k3, ω3), and so d23 = dk2 dk3 dω3).
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3. The evolution of the mean concentration
3.1. Green’s function for the passive tracer case

Now we specify the general Green’s function (2.34) for the passive tracer case (2.14)

g1(t) =
1

(2π)d
exp

{∫
i(k1 · b3)i({k1 − k3} · b−3)

1− iω3t− exp(−iω3t)

ω2
3

E3 d3

}
.

This expression has the form

gk(t) =
1

(2π)d
exp( 1

2
ik′D(t)ik − ik′R(t)) (3.1)

where D(t) is a symmetric matrix, and R(t) is a vector, defined by the following
integrals

D = 2

∫
Bk

1− cosωt

ω2
E(k, ω) dk dω where Bk = 1

2
(bkb

′
−k + b−kb′k), (3.2)

R =

∫
Bkk

ωt− sinωt

ω2
E(k, ω) dk dω

+
i

2

∫
(bkb

′
−k − b−kb′k)k1− cosωt

ω2
E(k, ω) dk dω. (3.3)

The prime denotes the transposition, so that b′k is a row, while bk is a column. The
matrix Bk (defined by the polarization vector bk) can be called the polarization matrix.
To obtain integrals (3.2)–(3.2), we used symmetrization (k3, ω3)↔ −(k3, ω3). We have
obvious properties bk = b∗−k and Bk = B∗−k. If bk = b−k or bk = −b−k, then the second
integral in (3.2) vanishes.

If the waves are linear, their energy spectrum is proportional to a delta function
of some surface in the (k, ω)-space, and we can integrate in (3.2), (3.3) over dω. In
particular, in situations of both odd and even dispersion law (2.5)–(2.6) we find the
same formulae

D = 2

∫
Bk

1− cosΩkt
Ωk2

εk dk, (3.4)

R =

∫
Bkk

Ωkt− sinΩkt

Ωk2

εk dk +
i

2

∫
(bkb

′
−k − b−kb′k)k1− cosΩkt

Ωk2

εk dk. (3.5)

3.1.1. Averaged equation

Specifying (2.30) for the passive tracer case (2.14), we find

ġ1 = g1

∫
ik′1b3b

′
−3i(k1 − k3)

1− exp(−iω3t)

iω3

E3 d3.

This equation has the form

ġ1 = ik′1 Ḋ ik1 g1 − ik′1Ṙ g1,

which in the r-space is the convection–diffusion equation

∂Φ

∂t
+ Ṙ · ∂Φ

∂r
=

∂

∂r

(
Ḋ
∂Φ

∂r′

)
. (3.6)

Here, Φ(r, t) is the Fourier transform of the function gk(t) (∂/∂r) is a row, while (∂/∂r′)
is a column). The function Φ(r, t) is not the original function ϕ(r, t) of equation (2.1);
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Φ is related to ϕ by the statistical near-identity transformation. The ensemble average
of the original function ϕ(r, t) is equal to Φ(r, t).

Note that the averaged equation (3.6) contains less information than Green’s
function; e.g. in the case of well-separated scales the matrix D approaches a constant
value (see § 3.2.1), and Ḋ = 0 has no information about this constant value.

3.1.2. The one-particle statistics

The Green function G(r, t) has a direct physical meaning; it is the probability of
finding a particle at point r at instant t, provided this particle was at the origin r = 0
at instant t = 0. The function (2π)dgk is the characteristic function of the probability
distribution G(r, t):

gk =
1

(2π)d

∫
G(r, t) exp(−ik · r) dr

and therefore

〈r〉 =

∫
G(r, t)r dr = i

∂[(2π)dg]

∂k

∣∣∣∣
k=0

= R,

〈r r′〉 =

∫
G(r, t)rr′ dr = − ∂[(2π)dg]

∂k2

∣∣∣∣
k=0

= D + RR′, 〈rr′〉 − 〈r〉〈r〉′ = D .

According to (3.1), the mean displacement R(t) and the variance tensor D(t) completely
define the probability distribution G(r, t).

3.2. Anomalous transport

In this paper, we are interested in the situation when there is no separation scales; so
we would like to predict the evolution of the averaged concentration of the passive
tracer during time t inside the range of time scales (1.17). However, we start with the
asymptotics of large time.

3.2.1. Trapping regime

If t � Tmax, the oscillating terms in the integrals (3.4) and (3.5) can be neglected,
and so

D(t) =

∫
(bkb

′
−k + b−kb′k)

εk

Ωk2

dk;

R(t) = ut, u =

∫
(bkb

′
−k + b−kb′k)k

εk

Ωk
dk +

i

2

∫
(bkb

′
−k − b−kb′k)k εkΩ2

k

dk.

Thus, as t → ∞, the covariance matrix D(t) approaches a constant matrix, while the
mean 〈r〉 = R becomes a linear function of time. The matrix Ḋ approaches zero,
and the terms with the second derivatives in the averaged equation (3.6) vanish. So
the average evolution of the tracer is reduced to a drift with a constant speed u.
The tracer particles do not disperse, but remain trapped (cf. Kraichnan 1968; Majda
& Kramer 1999) in a cluster, which drifts with the velocity u. In this situation,
the turbulent diffusion enters only at order ε4 with respect to the small parameter
(1.9) (see Herterich & Hasselmann 1982; Weichman & Glazman 1999, 2000; Balk &
McLaughlin 1999).

3.2.2. Vanishing of turbulent drift

In general (at any observation time t), the turbulent drift R vanishes if the medium
and the energy spectrum are isotropic. It also vanishes in an anisotropic situation if
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the velocity field is incompressible; according to (3.3), R = 0 if k · bk = 0. So, in order
to have a non-zero drift, we must assume both anisotropy and compressibility of the
velocity field.

3.2.3. The one-dimensional case

In the one-dimensional case (d = 1) the velocity field is necessarily compressible,
bk = 1. Consider a particular case of the general situation (1.10)–(1.11) when the
energy spectrum is a power-law function (in the inertial interval), while the dispersion
law is odd and has a power-law form for positive k:

εk = Ck−γ (Kmin � k � Kmax), Ωk =Akαsign(k) (α > 0). (3.7)

To calculate the integrals (3.4) and (3.5), we introduce a new integration variable
y =Akαt. So

D = ξ2

(
t

τ

)λ
4
I1(λ)

α
, (3.8)

where

λ = 2 +
γ − d
α

, I1(λ) =

∫ ∞
0

1− cos y

yλ
dy

y
, 0 < λ < 2⇔ d− 2α < γ < d. (3.9)

For reference, we present some values of the integral (3.9) (which are found with the
aid of Maple): I1(

1
2
) =
√

2π (sub-diffusion), I1(1) = 1
2
π (normal diffusion), I1(

3
2
) =

2
3

√
2π (super-diffusion). Also

R = ξ

(
t

τ

)µ
2
I2(µ)

α
, (3.10)

where

µ = 2 +
γ − d− 1

α
= λ− 1

α
, I2(µ) =

∫ ∞
0

y − sin y

yµ
dy

y
(1 < µ < 3). (3.11)

Although in this calculation we have considered only the case d = 1, we have
written these formulae with dimension d as a parameter since the expressions for the
exponents λ and µ are correct in any dimension d.

3.2.4. The two-dimensional case

As an example of the two-dimensional situation (d = 2), we consider isotropic
medium (more precisely there is invariance with respect to rotations, but there is no
mirror symmetry), but assume anisotropic energy spectrum. The dispersion law is just
a power-law function, Ωk =Akα, and the polarization vector is

bk = ip
k

k
+ iq

k̃

k
,

where k̃ is obtained from the vector k = (kx, ky) by 90◦ rotation: k̃ = (ky,−kx); p
and q are some scalar coefficients. To satisfy our normalization |bk|2 = l2 + m2 = 1,
we assume parameterization p = cos θ, q = sin θ. Introducing the polar coordinates
k = (k cosφ, k sinφ), we have

bk = i cos θ

[
cosφ
sinφ

]
+ i sin θ

[
sinφ
− cosφ

]
= i

[
cos(φ− θ)
sin(φ− θ)

]
. (3.12)
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If the parameter θ = 0, the polarization vector is parallel to the wave vector k; if θ =
1
2
π, the polarization vector is orthogonal to k, i.e. the velocity field is incompressible.

We take the energy spectrum in the form

εk = Ck−γ
{

1 +

∞∑
n=1

(Γn cos nφ+ Υn sin nφ)

}
in the inertial range Kmin � k � Kmax,

where Γn, Υn are some numbers, sufficiently small so that the spectrum εk stays
positive for any φ. Then according to formulae (3.4)–(3.5), we find

D = D0

∫ ∞
0

1− cosAkαt
(Akα)2

Ck−γ+d dk

k
, (3.13)

R = R0

∫ ∞
0

Akαt− sinAkαt
(Akα)2

Ck1−γ+d dk

k
, (3.14)

where the matrix D0 and the vector R0 are the results of integration in (3.4) and (3.5)
over the angle φ:

D0 = 2

∫ 2π

0

[
cos2(φ− θ) cos(φ− θ) sin(φ− θ)

sin(φ− θ) cos(φ− θ) sin2(φ− θ)

]
×
{

1 +

∞∑
n=1

(Γn cos nφ+ Υn sin nφ)

}
dφ,

R0 =

∫ 2π

0

[
cos2(φ− θ) cos(φ− θ) sin(φ− θ)

sin(φ− θ) cos(φ− θ) sin2(φ− θ)

] [
cosφ
sinφ

]
×
{

1 +

∞∑
n=1

(Γn cos nφ+ Υn sin nφ)

}
dφ.

From the entire sum in brackets, the non-zero contribution to D0 comes only from
the Γ2- and Υ2-terms, as well as from the unit. The non-zero contribution to R0 comes
only from the Γ1- and Υ1-terms. So,

D0 = π

[
2 + Γ2 cos 2θ + Υ2 sin 2θ −Γ2 sin 2θ + Υ2 cos 2θ

−Γ2 sin 2θ + Υ2 cos 2θ 2− Γ2 cos 2θ − Υ2 sin 2θ

]
, (3.15)

R0 =
π

2

[
Γ1(1 + cos 2θ) + Υ1 sin 2θ

−Γ1 sin 2θ + Υ1(1 + cos 2θ)

]
. (3.16)

To calculate the integrals (3.13) and (3.14), we introduce the new integration variable
y =Akαt. So

D = ξ2

(
t

τ

)λ
D0

I1(λ)

α
, (3.17)

R = ξ

(
t

τ

)µ
R0

I2(µ)

α
, (3.18)

where the exponents λ and µ, as well as the functions I1(λ) and I2(µ) are defined in
(3.9) and (3.11).
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Figure 1. Super-diffusion in one dimension during a five-decade time interval. The velocity field
exponents are α = 3/2 and γ = 1/4 (δ = −1/4); so, we have super-diffusion with the exponent
λ = 3/2. The curve shows the numerical simulation, and the straight line represents the theoretical
prediction. The graph is presented in non-dimensional form: time t is measured in units of time
scale τ and the displacement σ is measured in units of length scale ξ. The non-dimensional
cutoff parameters are Kmin = 104, Kmax = 108, Tmin = 10−12, Tmax = 10−6. (In dimensional units,
we have this picture, e.g. if A = 1 and C = 0.01; then ξ = 108, τ = 1012, and therefore,
Kmin = 10−4, Kmax = 104, Tmin = 10, Tmax = 106). The value of the small parameter (1.15) is
ε2 = 0.1. To obtain these results, we have used 104 grid points equally spaced between Kmin and
Kmax; we averaged over 10 realizations of the velocity field.

In particular, if the velocity field is isotropic (Γn = Υn = 0, n = 1, 2, . . .), then R = 0
and

σ2 ≡ Trace(D) = ξ2

(
t

τ

)λ
4π
I1(λ)

α
. (3.19)

3.2.5. Anomalous diffusion

The exponent λ in (3.8) and (3.17) determines the anomalous diffusion. When
0 < λ < 1, we have a sub-diffusive behaviour. When 1 < λ < 2, we have a super-
diffusion. At the lower limit, λ = 0, we have a trapping regime (see § 3.2.1), whereas
the upper limit, λ = 2, corresponds to extremely large-scale velocity field, when the
tracer moves with constant (but random) velocity. Balk (2000) presented the numerical
confirmation of the anomalous diffusion.

Figure 1 presents super-diffusion observed in numerical simulation. The power law
(3.8) is observed during time interval of more than a five-decade, during which the
mean square displacement σ grows 104 times. Let us stress that not only the exponent
λ, but also the factor in the power-law (3.8), are predicted.
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3.2.6. Anomalous drift

From (3.10) and (3.18) we see that the passive tracer can exhibit not only the
anomalous diffusion, but also an anomalous drift. When µ = 1, we have normal drift,
as in the case of well separated scales (§ 3.2.1). If µ > 1, we have super-drift. The
exponent µ cannot be less than 1, i.e. there is only normal drift or super-drift, but no
slow-drift. Let us note that if α > 0, the exponent µ cannot exceed 2, since µ = λ−1/α
and λ < 2. See Balk (2001) for numerical confirmation of the super-drift.

4. The two-point correlation function
Now we would like to find the evolution of the two-point (same time) correlation

function, i.e. the evolution of the ensemble average of the function

F12(t) = f1(t)f
∗
2(t).

According to equation (2.12), the function F12(t) satisfies the following equation

Ḟ12 +

∫
Ŵ−134F32A4 d34 +

∫
Ŵ ∗
−234F13A

∗
4 d34 = 0. (4.1)

4.1. Transformation

In order to find the equation for the ensemble average of the function F12(t), we make
the statistical near-identity transformation

F12 = G12 +

∫
X̂−134G32A4 d34 +

∫
X̂∗−234G13A

∗
4 d34. (4.2)

Substituting this into the equation (4.1), we find the equation for the new variable
G12(t)

Ġ12 +

∫
˙̂
X−134G32A4 d34 +

∫
˙̂
X∗−234G13A

∗
4 d34

+

∫
X̂−134Ġ32A4 d34 +

∫
X̂∗−234Ġ13A

∗
4 d34

+

∫
Ŵ−134

(
G32 +

∫
X̂−356G52A6 d56 +

∫
X̂∗−256G35A

∗
6 d56

)
A4 d34

+

∫
Ŵ ∗
−234

(
G13 +

∫
X̂−156G53A6 d56 +

∫
X̂∗−356G15A

∗
6 d56

)
A∗4 d34 = 0.

We choose the kernel X as in § 2.2.4 (see (2.28)), so that Ẋ−134 +W−134 = 0, and the
terms linear in A disappear from the equation.

4.1.1. Eliminating divergence

However, even after this elimination, Ġ is not of the order ε2, since now we allow
the exponent γ to be greater than the dimension d. When γ > d, the mean square
displacement D is infinite; and so, we assumed γ < d in § 3. At the same time, the
relative mean square displacement can be finite, since long waves transport a couple
of sufficiently close particles in a similar way); and so, in this section, we consider a
wider range of the exponent γ, in particular, γ > d (cf. § 1.2). There is a problem with
terms containing Ġ, e.g. term

Q12 =

∫
X̂−134Ġ32A4 d34.
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Its mean square is

〈|Q12|2〉 =

∫
X̂−134X̂

∗
−156Ġ32Ġ

∗
52〈A4A

∗
6〉 d3456

=

∫
|X−134|2|Ġ32|2E4δ(−k1 + k3 + k4) d34.

If γ > d, this integral diverges as k4 → 0. Indeed, E4 ∝ k
−γ
4 and k3 → k1, as k4 → 0.

So, we write the new equation in the form

Ġ12

[
1 +

∫
X̂−134A4 d34 +

∫
X̂∗−234A

∗
4 d34

]
+

∫
X̂−134(Ġ32 − Ġ12)A4 d34 +

∫
X̂∗−234(Ġ13 − Ġ12)A

∗
4 d34

+

∫
Ŵ−134X−356G52A4A6 d3456 +

∫
Ŵ−134X

∗
−256G35A4A

∗
6 d3456

+

∫
Ŵ ∗
−234X̂−156G53A

∗
4A6 d3456 +

∫
Ŵ ∗
−234X̂

∗
−356G15A

∗
4A
∗
6 d3456 = 0.

The terms in the second line of this equation are of order ε3, and we neglect them.
The first line in the passive scalar case has the form.

Ġ12[1 + i(k2 − k1) · Z(t)]

where

Z(t) =

∫
bk

1− e−iωt

iω
Aq dk dω.

We consider k2 = k1, so that the vector Z(t) disappears from the equation. Thus, we
can find only the behaviour of the function

Nk = 〈Fkk〉 = 〈|fk(t)|2〉 =
1

(2π)2d

∫
〈φ(r1, t)φ

∗(r2, t)〉 exp(−ik · (r1 − r2)) dr1 dr2.

(4.3)
Moments 〈F12(t)〉 for k1 6= k2 seem to be non-universal (depending on the details at
the ends of the inertial interval).

4.2. The function Nk and the relative mean square displacement

The calculation of the universal moments 〈F12(t)〉 with k1 = k2 turns out to be
sufficient to find the quantities (1.7) and (1.8). Differentiating (4.3) with respect to k
and then assuming k = 0, we find

S = −(2π)2d

[
∂2

∂k′∂k
Nk

]
k=0

, ρ2 = −(2π)2d

[
∂2

∂k ∂k′
Nk

]
k=0

, (4.4)

(∂/∂k is a row, while ∂/∂k′ is a column, so that ∂2N/∂k′∂k is a d × d matrix, and
∂2N/∂k∂k′ is a scalar).

Consider, for example, the isotropic situation. Suppose the medium and the tur-
bulence spectrum E(k, ω) are isotropic; suppose also that the initial condition for
the function Nk is isotropic. Then, the function Nk remains isotropic for any t > 0,
Nk = N(k, t), and the formula (4.4) gives

ρ2 = −(2π)2d

[
∂2N

∂k2
+
d− 1

k

∂N

∂k

]
k=0

= −(2π)2dd

[
∂2N

∂k2

]
k=0

. (4.5)
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According to the definition (4.3), the function Nk(t) has the following properties:
(i) Nk(t) is dimensionless;
(ii) Nk(t) is positive;
(iii) If – as in the passive tracer case – φ(r, t) is real, then Nk = N−k;
(iv) If – as in the passive tracer case – φ(r, t) is positive, then Nk 6 N|k=0;
(v) The normalization (1.3) implies that N|k=0 = 1/(2π)2d.

4.2.1. Examples

Example 1. Isotropic passive tracer cloud of characteristic size s.
Consider a two-dimensional isotropic cloud with Gaussian distribution

ϕ(r) =
1

2πs2
exp

(
− r2

2s2

)
. (4.6)

It satisfies the normalization (1.3); for this distribution, 〈x2〉 = 〈y2〉 = s2. The variance
of (4.6) is σ2 =

∫
r2ϕ(r) dr = 2s2, and so the mean squared distance between two

particles in this distribution is ρ2 = 2σ2 = 4s2.
By (4.3), we can find the corresponding function Nk. Considering (4.6) as an initial

distribution, we do not need averaging in (4.3) over the ensemble of the velocity fields,
and we find

Nk =
1

(2π)4
exp(−s2k2). (4.7)

This example illustrates the general rule that follows from the definition (4.3). If ρ is
the characteristic size of the passive tracer cloud, then 1/ρ is the characteristic size of
the support of the function Nk, i.e. the characteristic size of the region in the k-space
where the function Nk is essentially non-zero.

Example 2. Two particles separated by distance s.
Consider a set of two particles, located at the points 1

2
and− 1

2
s (s is the radius-vector

from one particle to the other). In this case

ϕ(r) = 1
2
[δ(r − 1

2
s) + δ(r + 1

2
s)]. (4.8)

The diameter of this two-particle cloud is ρ = s/
√

2 (which agrees with the fact that
ρ2 is the average of 4 possible squared distances in the set of 2 tracer particles:
ρ2 = 1

4
(s2 + s2 + 0 + 0)).

According to (4.3), we have

Nk =
1

2(2π)2d
[1 + cos(k · s)]. (4.9)

4.3. Averaging

Now we average our equation, assuming that the new variable G is statistically
independent from the field A (see § 2.2.5):

Ṅ1 +

∫
Ŵ−134X−31−4N1E4 d34 +

∫
Ŵ−134X

∗
−134N3E4 d34

+

∫
Ŵ ∗
−134X−134N3E4 d34 +

∫
Ŵ ∗
−134X

∗
−31−4N1E4 d34 = 0.
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It is a closed equation for the function Nk = Gkk = 〈Fkk〉. Now we recall the formulae
(2.13) and (2.28) for the kernels W and X, and find the following equation

Ṅ1 = 2

∫
|U−134|2 sin(σ1 − σ3 − ω4)t

σ1 − σ3 − ω4

δ(k1 − k3 − k4)N3E4 d34

+N1

∫
{U−134U−31−4 +U∗−134U

∗
−31−4} sin(σ1 − σ3 − ω4)t

σ1 − σ3 − ω4

δ(k1 − k3 − k4)E4 d34

+ iN1

∫
{U−134U−31−4 −U∗−134U

∗
−31−4} 1−cos(σ1−σ3−ω4)t

σ1−σ3−ω4

δ(k1−k3−k4)E4 d34.

(4.10)

We could derive this equation without averaging if in the original equation (4.1) we
made near-identity transformation up to order ε2 (instead of the transformation (4.2)
up to order ε). Then, we would push the randomness to order ε3 and just neglect the
ε3-terms (cf. § 2.2.5). However, this leads to more cumbersome calculations.

4.3.1. Remark about Hamiltonian symmetry

Suppose that the kernel U satisfies the condition

U−31−4 = −U∗−134 provided k1 − k3 − k4 = 0. (4.11)

Then equation (4.10) is reduced to the following form

Ṅ1 = 2

∫
|U−134|2(N3 −N1)E4

sin(σ1 − σ3 − ω4)t

σ1 − σ3 − ω4

δ(k1 − k3 − k4) d34. (4.12)

The symmetry (4.11) means that the system has a Hamiltonian structure (cf. Zakharov
1974). In particular, this symmetry takes place for the Schrödinger equation with
random potential, when U = i (see (2.15)). It also holds in the passive tracer case
(2.14) if the velocity field is incompressible, k · bk = 0. The symmetry (4.11) does not
hold for compressible flows. However, even in the compressible case, the averaged
equation still has the form (4.12) owing to certain cancellations (see § 5).

Equation (4.12) reminds us of the wave kinetic equation

Ṅ1 = 2

∫
|U−134|2(N3 −N1)E4δ(σ1 − σ3 − Ω4)δ(k1 − k3 − k4) d34

for the scattering of waves with dispersion law σ on waves with dispersion law Ω
(see Zakharov, Musher & Rubenchik 1985; Ryzhik, Papanicolaou & Keller 1996).
However, there are two important differences. First, instead of the usual frequency
delta function, our equation contains a specific time-dependence. Secondly, in our
equation, the function Nk is not the spectrum of the wave field with dispersion law
σk; in the latter case we would have 〈f1f

∗
2〉 = N1δ(k1 − k2). Instead, Nk = 〈fkf∗k〉; the

f-field is the Fourier image of the field ϕ which is not statistically homogeneous, but
concentrated in a finite region of the r-space.

The Hamiltonian symmetry (4.11) implies the conservation of ‘the total number of
quasi-particles’

N =

∫
Nk dk =

1

(2π)d

∫
|ϕ(r, t)|2 dr. (4.13)

Indeed, the time derivative of the quantity N by virtue of equation (4.12) is equal
zero.
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The Hamiltonian symmetry (4.11) implies the existence of ‘entropy’

Θ = 1
2

∫
N2
k dk. (4.14)

Indeed, by virtue of (4.12) we have

Θ̇ = −
∫
|U−134|2(N3 −N1)

2E4

sin(σ1 − σ3 − ω4)t

σ1 − σ3 − ω4

δ(k1 − k3 − k4) d134.

Here, we have taken into account the symmetry (4.11) and the fact that Eq = E−q . If
the main lobe |σ1−σ3−ω4| < π/2 of the function (sin(σ1 − σ3 − ω4)t)/(σ1 − σ3 − ω4)
dominates, then Θ̇ 6 0.

5. The spreading of the passive tracer cloud
5.1. Equations

Specifying equation (4.10) for the passive tracer case (2.14), we find (after some
straightforward algebra) the following equation

Ṅ1 = 2

∫
|k1 · b4|2 sinω4t

ω4

(N3 −N1)E4δ(k1 − k3 − k4) d34. (5.1)

We could expect to obtain an extra term, proportional to N1, from the last two
integrals in (4.10), besides that already present in (5.1); however, the extra term
actually vanishes owing to the symmetry Eq = E−q .

If the velocity field is due to linear waves with dispersion law ω = Ωk (see (2.5)
and (2.6)), then we can integrate over dω4 in (5.1) and find

Ṅ1 = 2

∫
|k1 · b4|2 sinΩ4t

Ω4

(N3 −N1)ε4δ(k1 − k3 − k4) dk3 dk4. (5.2)

This equation preserves the properties (i)–(v) described in § 4.3. In particular,

0 6 (2π)2dNk(t) 6 1.

Let us show the validity of the first inequality. Initially, Nk is positive. Suppose, at
some instant t0, the quantity Nk turns into zero for the first time, at some k0, to
become negative at k0 for t > t0; Nk(t0) is still positive for all other k 6= k0. Such a
situation contradicts equation (5.2). Ṅk0

(t0) is negative (or zero), but the right-hand
side of (5.2) is positive at t = t0, k = k0. To prove the second inequality, consider
function Mk(t) = 1− (2π)2dNk(t).

5.1.1. Convergence conditions

The integral (5.2) has singularities at k4 → 0 and k4 →∞. We will consider the
convergence when εk = ε−k (actually we need this condition only near the origin
k = 0, namely εk− ε−k = O(k), k → 0). To see the convergence conditions, we change
the integration variable k4 → −k4 and rewrite equation (5.2) in the form

Ṅ1 =

∫
|k1 · b4|2 sinΩ4t

Ω4

ε(k4) [N(k1 − k4, t)− 2N(k1, t) +N(k1 + k4, t)] dk4. (5.3)

Here, we took into account that |k1 · b4| = |k1 · b−4| (which follows from the property
b−4 = b∗4) and sinΩ4t/Ω4 = sinΩ−4t/Ω−4 (which is valid for even and odd dispersion
laws).

As k4 → 0, the integral (5.3) converges if γ < d + 2. As k4 → ∞, the integral
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k

Figure 2. For a ‘very large’ passive tracer cloud, the characteristic size of the support of Nk in the
k-space is ‘very small’.

converges if γ > d − 2α. Thus, if d − 2α < γ < d + 2, the spreading of the passive
tracer cloud is universal, i.e. independent of the details of the energy spectrum εk
at the ends of the inertial interval (1.11). This is similar to the universality of the
Kolmogorov–Zakharov spectra of weak turbulence (see Zakharov 1985).

The convergence of the integral in (5.2) is necessary for the applicability of the
perturbational approach. For the applicability of equation (5.2), we can require that
the time derivative given by equation (5.2) be much less than the frequency of the
travelling waves: Ṅ � Ω.

The behaviour of the passive tracer cloud crucially depends on the relation of
the size ρ of the cloud and the observation time t to the length and time scales of
the velocity field. A cloud with initial diameter ρ0 starts spreading in four different
regimes:

(i) ‘very small’ cloud, ρ0 � Λmin,
(ii) ‘small’ cloud, Λmin � ρ0 � ξ,
(iii) ‘large’ cloud, ξ � ρ0 � Λmax,
(iv) ‘very large’ cloud, Λmax � ρ0,

where the scale ξ is defined in (1.12) via the dimensional constants A and C.

5.2. The case of well-separated scales: ρ0 � Λmax or ρ0 � Λmin

5.2.1. ‘Very large’ cloud

First, suppose that we have a ‘very large’ passive tracer cloud, ρ0 � Λmax. Then,
the characteristic size of the support of Nk in the k-space is ‘very small’: 1/ρ0 � Kmin,
which is shown schematically in figure 2.

Since we are interested in statistical moments, determined by the derivatives of
the function Nk at k = 0, such as (4.4), we can consider k1 in (5.2) being near zero
(k1 � 1/ρ0). Then k3 ≈ −k4, and we can neglect N3 in (5.2):

Ṅ1 = −2N1

∫
|k1 · b4|2 sinΩ4t

Ω4

ε4 dk4. (5.4)

By virtue of (4.4), we can find the evolution of the relative mean square displacement;
differentiate both parts of (5.4) with respect to k1 twice, and then put k1 = 0):

Ṡ = 2Ḋ ⇒ d

dt
ρ2 = 2

d

dt
σ2, (5.5)

where the tensor of one-particle displacement D is given in (3.4). This agrees with
the fact that two distant particles (separated by distance � Λmax) are statistically
independent. We can find the solution of (5.4) in the form

Nk(t) = N0
k (2π)2dgk(t)g

∗
k(t),
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Nk

k1 Kmin Kmax

k

Figure 3. For a ‘very small’ passive tracer cloud, the characteristic size of the support of Nk in the
k-space is ‘very large’.

where gk(t) is Green’s function in the Fourier representation, see § 2.3; N0
k = Nk(0) is

the initial condition.

Suppose also that the observation time t is much larger than the largest time scale
of the velocity field, t� Tmax. Then Ṅk = 0 along with Ṡ = 2Ḋ = 0. As t → ∞, the
function Nk(t) approaches some constant function (independent of t, but depending
on k). This situation was studied by Weichman & Glazman 1999, 2002).

5.2.2. ‘Very small’ cloud

Now suppose that we have a ‘very small’ passive tracer cloud, ρ0 � Λmin. Then,
the characteristic size of the support of Nk in the k-space is very large, 1/ρ0 � Kmax,
which is shown in figure 3.

For k � 1/ρ0 we can approximate Nk by Taylor’s formula:

Nk =
1

(2π)2d
(1− 1

2
k′Sk).

We use this approximation in (5.2). Consider k1 near zero (k1 � Kmin), and so,
k3 ≈ −k4 (in particular, this implies that k3 � 1/ρ0, and the approximation is valid
for N3 as well). Then

Ṡ = 2

∫
Bk

sinΩkt

Ωk
εk(k

′Sk) dk

(Bk is the polarization matrix defined in (3.2) via the polarization vector bk).

If, in addition, the observation time is also ‘very small’: t� Tmin, then sinΩkt = Ωkt,
and

dS

2tdt
=

∫
Bkεk(k

′Sk) dk. (5.6)

If we introduce new time η = t2, the entries of the matrix S satisfy a system of
linear homogeneous o.d.e. with constant coefficients, and therefore S is the sum of
exponential functions of η = t2. Of course, in each realization of the velocity field,
two close particles diverge exponentially in time. However, when we average the
Gaussian ensemble of the velocity fields, we find S to be the sum of exponential
functions of η = t2, according to (5.6). (This is easy to understand using the following
simple model. Let y(t) = y0e

ut, where u is a random variable with a Gaussian
distribution p(u) = (a/

√
π) exp(−a2u2) (y0 and a > 0 are some constants). Then

〈y(t)〉 = y0(a/
√
π)
∫

exp(ut) exp(−a2u2)du = y0 exp(t2/(4a2)).)
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Nk

1/ρ0Kmin Kmax

k

sin(¿k t)/¿k

Figure 4. The support of both functions shrinks with time.

5.3. Estimates showing two different anomalous regimes

Now we start considering the anomalous situation when the initial diameter ρ0 of
the passive tracer cloud is well inside the range of the length scales of the velocity
field, Λmin � ρ0 � Λmax. We will see that the spreading of the cloud can occur in two
different regimes, described in §§ 6 and 7. This depends on the relation of the diameter
ρ0 and the scale ξ (defined in § 1.2 via the dimensional factors A and C). In order
to see the existence of these two regimes, we make rough estimates in (5.3), which is
equivalent to (5.2).

The passive tracer cloud is spreading in the r-space, and, respectively, the ‘support’
of the function Nk (the area of essentially non-zero Nk) is shrinking in the k-space.
In (5.2) or (5.3) we have two functions whose ‘support’ in the k-space is shrinking
with time

Nk(t),
sinΩkt

Ωk
. (5.7)

The ‘support’ of the second function is roughly 1/(At)1/α. Initially, the support of
the first function is 1/ρ0, and the support of the second function is infinite. As time
progresses the ‘supports’ of both functions shrink (see figure 4).

At time t = t0 ∼ ρα0/A, the ‘support’ of the second function reaches the value 1/ρ0,
i.e. becomes comparable with the initial ‘support’ of the first function. Below, we
estimate whether during this time the function Nk changes significantly, or changes
little, and therefore its support stays almost the same, equal to 1/ρ0.

According to (5.3), the time derivative Nk(t) is less than or of the order of the
following value

1

ρ2
0

C
(

1

ρ0

)γ
t0

(
1

ρ0

)d
,

and so we have an estimate

|Nk(t)−Nk(0)| ∼ Ct20
ρ

2+d−γ
0

∼ C
A2

ρ
−2−d+γ+2α
0 =

(
ρ0

ξ

)−δ
,

where ξ and δ are introduced in § 1.2; it is assumed throughout this paper that δ < 0.
From this estimate, we see that if ρ0 � ξ, then we can neglect the change Nk(t) during
the initial time t0. After this time interval t0, for some time (see § 6.3.1) we can assume
that the support of the second function in (5.7) is much smaller than the support of
the first. This situation is considered in § 6.

If, on the other hand, ρ0 � ξ, then the function Nk(t) changes significantly during
the initial time interval t0, and the passive tracer cloud spreads significantly during
t0. The support of the first function in (5.7) shrinks and stays much smaller than the
support of the second. We study this situation in § 7.
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Nk

Kmin Kmax

k

sin(¿k t)/¿k

Figure 5. The situation where the ‘support’ of Nk is much larger than the ‘support’ of sin(Ωkt)/Ωk .

6. ‘Small’ passive tracer cloud: differential approximation
In this section, we simplify the general equation (5.2) for the situation of the small

cloud, when the ‘support’ of the second function in (5.7) is much smaller than the
‘support’ of the first. This situation is shown schematically in figure 5.

The essential contribution to the integral (6.1) comes only from the region of
‘support’ of the function sinΩ4t/Ω4, i.e. where |Ω4|t < 1⇔ k4 < (π/At)1/α. Since
k1 − k3 = k4, we can approximate the difference N3 −N1 by a differential expression
and reduce (6.1) to a differential equation.

To be specific, let us consider the two-dimensional incompressible velocity field.
Then in polar coordinates (k, φ)

k = k

[
cosφ
sinφ

]
, bk = i

[
sinφ

− cosφ

]
, k1 · b4 = k1 sin(φ4 − φ1),

and (5.2) takes the form

Ṅ1 = 2k2
1

∫
sin2(φ4 − φ1)

sinΩ4t

Ω4

(N3 −N1)ε4δ(k1 − k3 − k4) dk3dk4. (6.1)

In addition, we assume that the velocity field is statistically isotropic, i.e. the
dispersion law and the energy spectrum are functions of the wavenumber only:
Ωk = Ω(k), εk = ε(k). Note that the distribution of the passive tracer, i.e. the function
Nk(t), can be anisotropic, depending on the polar angle φ, N = N(k, φ, t); this happens
if the initial condition Nk(0) is anisotropic.

6.1. Deriving the differential approximation via the weak form

In order to derive the differential approximation, we rewrite equation (6.1) in the
weak form: multiply (6.1) by a test function χ1 = χ(k1) and integrate over dk1

d

dt

∫
N1χ1dk1 = −

∫
k2

1 sin2(φ4 − φ1)(N3 −N1)(χ3 − χ1)ε4
sinΩ4t

Ω4

× δ(k1 − k3 − k4) d134. (6.2)

Using the smallness of k4, we replace the finite differences by the corresponding
differential expressions

N3 −N1 = −∂N1

∂k1

k4 = k4

{
∂N1

∂k1

cos(φ4 − φ1) +
1

k1

∂N1

∂φ1

sin(φ4 − φ1)

}
,

χ3 − χ1 = −∂χ1

∂k1

k4 = k4

{
∂χ1

∂k1

cos(φ4 − φ1) +
1

k1

∂χ1

∂φ1

sin(φ4 − φ1)

}
.
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Then the integration over dk3 in (6.2) just takes away the delta function. After that,
we integrate over dφ4, using the isotropy of the velocity field,

d

dt

∫
N1χ1dk1 = −

∫ {
k2

1

∂N1

∂k1

∂χ1

∂k1

+ 3
∂N1

∂φ1

∂χ1

∂φ1

}
Ẏ (t) dk1,

where

Y (t) =
π

4

∫ ∞
0

k2+d 1− cosΩkt

Ω2
k

εk
dk

k
. (6.3)

We have defined the time-dependent coefficient in our equation as a time derivative
Ẏ (t) – instead of denoting it by some function of time, say X(t) – in order to simplify
further formulae; besides, Y (t) (not Ẏ (t)) is dimensionless. Since the test function
χ(k) is arbitrary, we have the following differential equation

Ṅ = Ẏ (t)
∂

∂k

[
k2 ∂N

∂k

]
+ 3Ẏ (t)

∂2N

∂φ2
. (6.4)

6.1.1. The power-law situation

If the dispersion law and the energy spectrum are power-law functions of the
wavenumber, Ωk = Akα, εk = Ck−γ , in the inertial range, then the quantity Y is a
power-law function of time:

Y (t) = B
(
t

τ

)β
where β = 2 +

γ − d− 2

α
= λ− 2

α
, B =

π

4

I1(β)

α
, (6.5)

(to derive this formula, we made the change of the integration variable in (6.3),
Akαt = y and expressed the factors A and C via the scales ξ and τ, defined in § 1.2;
the integral I1 is defined in (3.9)).

The applicability of the differential approximation requires the convergence of the
integral (6.3). This integral converges at k → 0 if 2 + d − γ > 0, and at k → ∞ if
2 + d− γ− 2α < 0; the latter is the condition δ < 0 assumed from the very beginning,
in § 1.2.

6.2. Mellin and Taylor expansions

Equation (6.4) is easily solved by the Fourier transform in φ and Mellin transform in
k. Our primary goal is the tensor of relative displacement (1.7), which is determined
by the derivatives of the function Nk at the origin (see (4.4)). So, we find the function
Nk only near the origin. Assuming that Nk is analytic at k = 0, we expand it in the
Taylor series

N =

∞∑
u,v=0

huv(t)k
u
xk

v
y.

Since

kx = k
eiφ + e−iφ

2
, ky = k

eiφ − e−iφ

2i
,

we have

N =

∞∑
l=0

l∑
m=−l

′
Hlm(t)kleimφ (H∗l,m = Hl,−m), (6.6)

where the second sum (marked by a prime) implies summation only over every other
integer from −l to l: m = −l,−l + 2, . . . , l − 2, l. Substituting this expansion into (6.4)
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we find independent equations for the coefficients Hlm(t)

Ḣlm = Ẏ (t)[l(l + 1)− 3m2]Hlm. (6.7)

According to (6.6),

N = H00 +H11(kx + iky) +H∗11(kx − iky) +H20(k
2
x + k2

y)

+H22(kx + iky)
2 +H∗22(kx − iky)

2 + O(k3) (k → 0).

Using this in (4.4), we have

S = −2(2π)4

[
H20 + 2Re(H22) −2Im(H22)
−2Im(H22) H20 − 2Re(H22)

]
, ρ2 = −4(2π)4H20 (6.8)

(Re and Im are real and imaginary parts). By virtue of (6.7) with l = 2 and m = 0,
we find the evolution of the diameter of the passive tracer cloud

ρ(t) = ρ0 exp{3Y (t)}, (6.9)

where ρ0 is the initial diameter.

6.2.1. Example: two particles (with fixed initial locations)

Consider the evolution of two particles initially located at the two points 1
2
s and

− 1
2
s, so that the initial distance between the particles is s. Then initially,

ϕ(r) = 1
2
[δ(r − 1

2
s) + δ(r + 1

2
s)]⇒

Nk =
1

2(2π)4
[1 + cos(k · s)] =

1

(2π)4

[
1− 1

4
(k · s)2 + O(k4)

]
(k → 0).

If the polar axis is chosen in the direction of vector s, then initially,

Nk =
1

(2π)4

[
1− 1

8
k2s2 − 1

16
k2s2e2iφ − 1

16
k2s2e−2iφ + O(k4)

]
(k → 0),

H22 = 1
2
H20 = − s2

16(2π)4
.

From these initial values by virtue of (6.7), we find the coefficients H20 and H22 at
instant t, and then by (6.8) we obtain the tensor of relative displacement

S =
s2

4

[
exp{6Y (t)}+ exp{−6Y (t)} 0

0 exp{6Y (t)} − exp{−6Y (t)}
]
. (6.10)

This expression shows that, with time, the passive tracer cloud becomes more isotropic
(on average): the distinction between the x-axis and y-axis disappears.

The mean diameter of the passive tracer cloud grows with time according to the
law

ρ(t) =
s√
2

exp{3Y (t)}.
Thus, the divergence of ‘close’ tracer particles is

exponential if β = 1 ⇔ γ = d+ 2− α,
sub-exponential if 0 < β < 1 ⇔ d+ 2− 2α < γ < d+ 2− α,

super-exponential if 1 < β < 2 ⇔ d+ 2− α < γ < d+ 2.
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6.2.2. Example: isotropic passive tracer cloud

Consider the evolution of an ensemble of particles with an isotropic distribution
ϕ(r, t) of initial characteristic size s, so that initially

ϕ(r) =
1

2πs2
exp

(
− r2

2s2

)
⇒

Nk =
1

(2π)4
exp(−s2k2) =

1

(2π)4
[1− s2k2 + O(k4)] (k → 0).

Therefore,

ρ(t) = 2s exp{3Y (t)}.

6.3. The applicability of the differential approximation

6.3.1. Estimating the time during which the differential approximation is applicable

The differential approximation can work only during some initial stage, when the
size of the passive tracer cloud is still small enough. Suppose that, initially, the
passive tracer is concentrated in some ‘small’ region of the r-space, and, respectively,
the function Nk has a ‘wide’ support in the k-space. With time, the passive tracer
cloud spreads in the r-space, and, respectively, the region of essentially non-zero
function Nk shrinks in the k-space. However, according to (6.1), the value of Nk at
the origin remains constant (Ṅk = 0 if k = 0). So, the k-derivatives of the function Nk

become large, and the differential approximation can break down (see more accurate
estimates in §§ 5.2.6 and 5.2.7).

Let us estimate the time during which the differential approximation (6.4) is
applicable.

If ρ is the characteristic size of the passive tracer cloud in the r-space, then 1/ρ is
the characteristic size of the passive tracer cloud in the k-space; more precisely, the
function Nk changes from its constant value N0 = 1/(2π)2d at the origin k = 0 to
essentially zero value at distance 1/ρ from the origin. The differential approximation
requires that k4 = |k1 − k3| is small compared with 1/ρ. The typical value of k4

is obtained from the condition Ω4t = 1, i.e. k4 = (1/At)1/α. Thus, the differential
approximation is applicable if(

1

At
)1/α

� 1

ρ
where ρ = ρ0 exp{3B(t/τ)β},

(parameters β and B are given in (6.5)). The smaller the initial diameter of the passive
tracer cloud ρ0, the longer the differential approximation is applicable. We can rewrite
this estimate in the form

x

h
� ex, where x = 3αβB

(
t

τ

)β
, h = 3αβB

(
ρ0

ξ

)αβ
,

where x is a new variable, and h is a new parameter; they are both non-dimensional.
For sufficiently small h, this condition defines an interval of possible x. This interval
shrinks to a point x = 1 when h = e−1. If h > e−1, it is impossible to satisfy this
condition, and the differential approximation does not take place at all. If h � e−1

(i.e. ρ0 � ξ), the estimate gives

h� x� log(1/h).
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Figure 6. The super-exponential divergence of ‘close’ passive tracer particles. In non-dimensional
units (when ξ = τ = 1), Ωk = k2 and εk = k−3; so, according to the theoretical prediction,
ρ = ρ0 exp (2t3/2). The curve shows the numerical simulation, while the straight line represents
the theoretical prediction. To obtain these results, we averaged over 10 realizations of the velocity
field.

In terms of the original time t this means(
ρ0

ξ

)α
� t

τ
�
[

1

3B log
ξ

ρ0

− log(3αβB)

3αβB
]1/β

. (6.11)

The above estimate assumes that the passive tracer cloud is roughly isotropic; if
a strong anisotropy is present, the differential approximation can break down even
earlier.

6.3.2. Saturation of the initial ‘fast’ divergence

The initial regime of (sub- or super-) exponential divergence saturates for sufficiently
large time. This regime can last till time t defined by the upper estimate in (6.11). At
this time the average distance (6.9) between two tracer particles reaches the value

ρ̄ = ξ(3αβB)−1/αβ.

Thus, at the end of the initial regime the average distance between two tracer particles
does not depend on the initial distance ρ0; it is roughly equal to the scale ξ. If the
initial distance ρ0 exceeds the scale ξ, then the initial regime of ‘fast’ divergence and
the differential approximation do not take place at all.

6.3.3. Numerical simulation

In order to check the prediction (6.9), we computed the evolution of two particles,
initially located at points (− 1

2
s, 0) and ( 1

2
s, 0), s = 0.03, see the first example in § 6.2.1.

The results are presented in figure 6 in the log–log scale log(ρ/ρ0) vs. time t.
According to the theory, the super-exponential divergence should saturate when

ρ ≈ ξ = 1, i.e. log(ρ/ρ0) = log(1/(s/
√

2)) ≈ 4 (which agrees with figure 6). During the
regime when the differential approximation is still applicable, the distance between
the particles increases about 20 times.

Let us stress that the theory gives not only the slope of the straight line on figure 6,



198 A. M. Balk

but also its location. In other words, the theory gives not only the exponent β, but
also the pre-factor B.

We simulated the velocity field following the procedure of modelling of Gaussian
processes described in Kovalenko, Kuznetsov & Shurenkov (1996). We divide the
domain

Kmin 6 k 6 Kmax, 0 6 φ 6 2π,

into many grid-cells ∆mn in the k-plane:

km 6 k 6 km+1 (m = 1, 2, . . . , m̄), φn 6 φ 6 φn+1 (n = 1, 2, . . . , n̄).

The grid should be sufficiently dense, i.e. the numbers m̄ and n̄ should be sufficiently
large, to ensure that the discrete representation approximates the continuous Gaussian
velocity field well. (In our calculation we took m̄ = 300, n̄ = 200.) In each of the cells
we choose some ‘central’ value of the wave vector Kmn = (Kmn, Φmn) ∈ ∆mn. Then, the
velocity field is approximated by the sum

v(x, y, t) =
∑
mn

ζmnbmn exp {ipmnx+ iqmny − iΩmnt}, (6.12)

where

pmn = Kmn cosΦmn, qmn = Kmn sinΦmn, Ωmn = Ω(Kmn), bmn = b(Kmn)

and ζmn are independent Gaussian variables with zero mean and variance

〈|ζmn|2〉 = Imn =

∫
∆mn

Ek dk.

To generate the complex amplitude ζmn, we use the MATLAB random number
generator to find (i) the random ‘phase’ θmn uniformly distributed in the interval
(0, 2π) and (ii) the random (real positive) ‘amplitude’ Amn with distribution function
1− exp(−x2/Imn); ζmn = Amn exp(iθmn).

Once we have a realization, (6.12), of the velocity field, we use the standard
MATLAB o.d.e.-solver to solve the system of two ordinary differential equations

ẋ = v(x, y, t),

ẏ = v(x, y, t),

with two different initial conditions: (x(0), y(0)) = (− 1
2
s, 0) and (x(0), y(0)) = ( 1

2
s, 0).

The time step is chosen automatically by MATLAB to ensure relative accuracy 10−3

and absolute accuracy 10−6. Then we repeat this calculation with another realization
of the velocity field. Finally, we average over 10 realizations.

7. ‘Large’ passive tracer cloud: self-similar spreading
In this section we consider ‘large’ passive tracer clouds, when the ‘support’ of the first

function in (5.7) is much smaller than the ‘support’ of the second: 1/ρ(t)� (1/At)1/α;
this situation is shown schematically in figure 7.

7.1. Splitting the integration domain

We can introduce some intermediate scale K(t) such that

1

ρ(t)
�K(t)� 1

(At)1/α
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Figure 7. The situation where the ‘support’ of Nk is much smaller than the ‘support’ of
sin(Ωkt)/Ωk .

(figure 7) and split integration in (5.2) over k4 into two regions: |k4| < K(t) and
|k4| >K(t). In the first region we can replace sinΩ4t/Ω4 by its limit at k4 → 0, which
is equal to t. Since in order to find the mean relative displacement we require only
the derivatives of Nk at k = 0 (see (4.4)), we assume that in equation (5.2) the vector
k1 is ‘close to the origin’ (k1 is smaller than any scale). Then, in the second region
we have |k3| ≈ |k4| >K(t)� 1/ρ(t), and therefore, we can replace N3 by zero. In the
result, (5.2) takes the form

Ṅ1 = 2t

∫
|k4|<K(t)

|k1 · b4|2(N3 −N1)ε4δ(k1 − k3 − k4) d34

−2N1

∫
|k4|>K(t)

|k1 · b4|2 sinΩ4t

Ω4

ε4 d4. (7.1)

We will see that the final result is independent of K(t).
Recalling the formula (4.4) for the tensor S of relative mean square displacement,

we differentiate equation (7.1) with respect to k1 and then assume k1 = 0⇒ k3 = k4

1
4
Ṡ = t

∫
|k4|<K(t)

B4[1− (2π)2dN4]ε4 dk4 −
∫
|k4|>K(t)

B4

sinΩ4t

Ω4

ε4 dk4. (7.2)

7.2. Assuming isotropy and self-similarity

Now we make three isotropy assumptions:
(i) The medium is isotropic; this means that the dispersion law depends only on

the wavenumber |k| = k, Ωk = Ω(k), and the integral of the polarization matrix Bk
over angular variables ζ of k is proportional to the identity matrix I∫

Bkdζ = I
1

d

∫
dζ = I

1

d
×
{

2π if d = 2,
4π if d = 3

(dk = kd−1 dk dζ).

In the two-dimensional situation, which we consider below, the polarization vector bk
is given by the formula (3.12) where the parameter θ can depend on k; and so∫ 2π

0

B4 dφ4 = πI .

(ii) The velocity field is statistically isotropic, i.e. εk = ε(k).
(iii) The distribution of the passive tracer is isotropic, i.e. Nk(t) = N(k, t), and

therefore,

S =
ρ2

d
I .

Property (iii) is implied by (i) and (ii) if the initial condition is isotropic, Nk(0) =
N(k, 0).
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Integrating over dφ4 in (7.2), we find

1

8π

d

dt
ρ2 = t

∫ K(t)

0

[1− (2π)2dN4]ε4k
d
4

dk4

k4

+

∫ ∞
K(t)

sinΩ4t

Ω4

ε4k
d
4

dk4

k4

. (7.3)

In other dimensions d 6= 2 we would have the same equation, but with a different
factor only in the left-hand side, e.g. instead of 8π in two dimensions we would have
16π in three dimensions. Though we consider the two dimensional case, we keep
general d in (7.3), because this allows us to obtain the converge conditions for an
arbitrary d.

Let us further assume that the dispersion law and the energy spectrum are power-
law functions of the wavenumber, Ωk = Akα, εk = Ck−γ (in the inertial range), and
the function Nk(t) has a self-similar form

Nk(t) = N(p) where p = kρ(t). (7.4)

Now we transform integrals in (7.2); introducing new integration variables

p = k4ρ(t) (for the first integral), and y =Akα4t (for the second integral),

we have

ρρ̇

4πC = tργ−d
∫ Kρ

0

1− (2π)2dNp

pγ−d
dp

p
+

1

α
t(At)(γ−d)/α

∫ ∞
AKαt

sin y

y1+(γ−d)/α
dy

y
.

Since Kρ� 1 and AKαt� 1 (figure 7), we can rewrite these integrals in the form∫ Kρ

0

1− (2π)2dNp

pγ−d
dp

p
=

∫ L

0

1− (2π)2dNp

pγ−d
dp

p
+

∫ Kρ

L

pd−γ
dp

p
,∫ ∞

AKαt

sin y

y1+(γ−d)/α
dy

y
=

∫ ∞
l

sin y

y1+(γ−d)/α
dy

y
+

∫ l

AKαt

y(d−γ)/αdy

y
.

where L is sufficiently large that Np is practically zero for p > L, and l is sufficiently
small number such that sin y is practically y for y < l. So

ρρ̇

4πC = tργ−d
{∫ L

0

1− (2π)2dNp

pγ−d
dp

p
+

1

d− γ
[
(Kρ)d−γ − Ld−γ]}

+
1

α
t(At)(γ−d)/α

{∫ ∞
l

sin y

y1+(γ−d)/α
dy

y
+

α

d− γ
[
l(d−γ)/α − (AKαt)(d−γ)/α]}

We see that the scale K(t) drops out and we find the following equation

ρρ̇ = aCtργ−d + bCt(At)(γ−d)/α (7.5)

where

a = 4π lim
L→∞

[∫ L

0

1− (2π)2dNp

pγ−d
dp

p
− Ld−γ

d− γ
]
,

b = 4π lim
l→0

[
1

α

∫ ∞
l

sin y

y1+(γ−d)/α
dy

y
+
l(d−γ)/α

d− γ
]
.

The factors a and b are dimensionless. The extra terms in these formulae (the finite
terms, without integrals) ‘help the integrals to converge’, or, more precisely, they
widen the region of the exponent γ for which the limits are finite. The factor a is
finite if γ < d + 2 (provided Np → 0 sufficiently fast as p → 0). The factor b is finite
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if d− 2α < γ < d+ 2α. Thus, the condition

d− 2α < γ < min(d+ 2, d+ 2α)

is necessary for the applicability of equation (7.5).
In non-dimensional form, when length and time are measured in units ξ and τ,

respectively, equation (7.5) is

ρρ̇ = atργ−d + bt1+(γ−d)/α (7.6)

(see also § 1.3.4).
If γ < d, then

a = −4π

∫ ∞
0

(2π)2dNp

pγ−d
dp

p
< 0, b =

4π

α

∫ ∞
0

sin y

yλ
dy = λ

4πI1(λ)

α
> 0;

the exponent λ and the integral I1(λ) are defined in (3.9); to establish the last equality,
we integrated by parts.

If γ > d, then

a = 4π

∫ ∞
0

1− (2π)2dNp

pγ−d
dp

p
> 0, b = −4π

α

∫ ∞
0

y − sin y

yλ
dy < 0;

here, the first inequality follows from the properties (iv), (v) in § 4.3.

7.3. Evolution of the diameter of the passive tracer cloud

If γ < d, then initially (for small t) the second term on the right-hand side of (7.6)
dominates the first one; let us find the condition when this dominance is preserved
as t→∞:

bt1+(γ−d)/α � |a|tργ−d ⇒ ρ

t1/α
�
(
b

|a|
)1/(γ−d)

. (7.7)

If we neglect the first term on the right-hand side of (7.6), then

ρρ̇ = bt1+(γ−d)/α ⇔ ρ2 − ρ2
0 =

2b

λ
tλ = 2

4πI1(λ)

α
tλ. (7.8)

The dominance (7.7) holds as t → ∞ if 1
2
λ > 1/α ⇔ δ < 0; the latter inequality was

assumed in the beginning, § 1.2. When γ < d, the mean square displacement σ2 is
finite, and equation (7.8) means that ρ2(t) − ρ2

0 = 2σ2(t) (compare (7.8) with (3.19)).
This ρ(t) corresponds to the average distance between two uncorrelated particles.
Since the factor a is negative, the correlation slows down the growth of the relative
displacement. On the other hand, if γ > d, then a > 0 and b < 0, which means that
the relative displacement between two particles grows owing to the correlation.

If γ > d, then initially (for small t) the first term on the right-hand side of (7.6)
dominates the second one; let us find the condition when this dominance is preserved
as t→∞:

atργ−d � |b|t1+(γ−d)/α ⇒ ρ

t1/α
�
(
b

|a|
)1/(γ−d)

. (7.9)

If we neglect the second term on the right-hand side of (7.6), then

ρρ̇ = atργ−d ⇒ ρ2/ν − ρ2/ν
0 =

at2

ν
where ν =

2

2 + d− γ > 0. (7.10)
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As t→∞, ρ(t) grows like tν , and the dominance (7.9) holds if ν > 1/α, which is again
equivalent to the condition δ < 0 assumed in § 1.2.

Thus,

as t→∞, ρ(t) ∼
{ √

2b/λtλ/2 if γ < d,

(a/ν)ν/2tν if γ > d.
(7.11)

Let us stress, when we say t → ∞, we mean t � τ (in non-dimensional form τ = 1),
but still t� Tmax. While the constant b is easily calculated (see (7.8)), the calculation
of the constant a requires the solution of the integral-differential equation for the
function Nk .

The derivation of the diameter equation (7.6) requires that the passive tracer cloud
be large enough, i.e. the ‘support’ of the first function in (5.7) is much smaller than
the ‘support’ of the second: 1/ρ(t) � 1/t1/α; see figure 7. Will this condition hold
as t→∞ (when the initial diameter ρ0 becomes negligible)? According to (7.11), the
answer is ‘Yes’, provided δ < 0, the condition assumed in § 1.2.

8. Conclusion
In this paper we have answered the two physical questions formulated in § 1.1.
The developed approach can be applied to several other problems. In particular,

we intend to apply it to the problem of wave propagation through a random medium
when there is a wide range of heterogeneity scales. The wavelength of the propagating
signal is well inside this range. Such a problem arises, for example, in geophysics (see
Sato & Fehler 1998).

We also intend to apply the developed approach to a few problems of wave
turbulence in which the wave kinetic equation does not work.

The rigorous mathematical justification of this approach is interesting because the
above predictions are observed only statistically, on average over many realizations;
the individual trajectories of the tracer particles significantly deviate from each other.
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